__init__.py 25.6 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14
# pylint: disable=doc-string-missing
M
MRXLT 已提交
15 16 17 18 19 20

import os
from .proto import server_configure_pb2 as server_sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import tarfile
M
MRXLT 已提交
21
import socket
22
import paddle_serving_server_gpu as paddle_serving_server
23
import time
24
from .version import serving_server_version
M
MRXLT 已提交
25
from contextlib import closing
G
guru4elephant 已提交
26
import argparse
B
barrierye 已提交
27
import collections
M
MRXLT 已提交
28
import fcntl
M
MRXLT 已提交
29

B
barrierye 已提交
30 31 32
import numpy as np
import grpc
from .proto import multi_lang_general_model_service_pb2
B
barrierye 已提交
33 34 35
import sys
sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))
B
barrierye 已提交
36 37 38 39
from .proto import multi_lang_general_model_service_pb2_grpc
from multiprocessing import Pool, Process
from concurrent import futures

B
barrierye 已提交
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
def serve_args():
    parser = argparse.ArgumentParser("serve")
    parser.add_argument(
        "--thread", type=int, default=10, help="Concurrency of server")
    parser.add_argument(
        "--model", type=str, default="", help="Model for serving")
    parser.add_argument(
        "--port", type=int, default=9292, help="Port of the starting gpu")
    parser.add_argument(
        "--workdir",
        type=str,
        default="workdir",
        help="Working dir of current service")
    parser.add_argument(
        "--device", type=str, default="gpu", help="Type of device")
B
barrierye 已提交
56
    parser.add_argument("--gpu_ids", type=str, default="", help="gpu ids")
57
    parser.add_argument(
58
        "--name", type=str, default="None", help="Default service name")
M
MRXLT 已提交
59
    parser.add_argument(
M
MRXLT 已提交
60 61 62 63
        "--mem_optim",
        default=False,
        action="store_true",
        help="Memory optimize")
M
MRXLT 已提交
64
    parser.add_argument(
M
MRXLT 已提交
65
        "--ir_optim", default=False, action="store_true", help="Graph optimize")
M
MRXLT 已提交
66 67 68
    parser.add_argument(
        "--max_body_size",
        type=int,
M
MRXLT 已提交
69
        default=512 * 1024 * 1024,
M
MRXLT 已提交
70
        help="Limit sizes of messages")
71
    return parser.parse_args()
M
MRXLT 已提交
72

B
barrierye 已提交
73

M
MRXLT 已提交
74 75 76
class OpMaker(object):
    def __init__(self):
        self.op_dict = {
M
MRXLT 已提交
77 78 79 80 81 82
            "general_infer": "GeneralInferOp",
            "general_reader": "GeneralReaderOp",
            "general_response": "GeneralResponseOp",
            "general_text_reader": "GeneralTextReaderOp",
            "general_text_response": "GeneralTextResponseOp",
            "general_single_kv": "GeneralSingleKVOp",
W
wangjiawei04 已提交
83
            "general_dist_kv_infer": "GeneralDistKVInferOp",
M
MRXLT 已提交
84
            "general_dist_kv": "GeneralDistKVOp"
M
MRXLT 已提交
85
        }
B
barrierye 已提交
86
        self.node_name_suffix_ = collections.defaultdict(int)
M
MRXLT 已提交
87

B
barrierye 已提交
88 89 90 91
    def create(self, node_type, engine_name=None, inputs=[], outputs=[]):
        if node_type not in self.op_dict:
            raise Exception("Op type {} is not supported right now".format(
                node_type))
M
MRXLT 已提交
92
        node = server_sdk.DAGNode()
B
barrierye 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        # node.name will be used as the infer engine name
        if engine_name:
            node.name = engine_name
        else:
            node.name = '{}_{}'.format(node_type,
                                       self.node_name_suffix_[node_type])
            self.node_name_suffix_[node_type] += 1

        node.type = self.op_dict[node_type]
        if inputs:
            for dep_node_str in inputs:
                dep_node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(dep_node_str, dep_node)
                dep = server_sdk.DAGNodeDependency()
                dep.name = dep_node.name
                dep.mode = "RO"
                node.dependencies.extend([dep])
        # Because the return value will be used as the key value of the
        # dict, and the proto object is variable which cannot be hashed,
        # so it is processed into a string. This has little effect on
        # overall efficiency.
        return google.protobuf.text_format.MessageToString(node)
M
MRXLT 已提交
115 116 117 118 119 120 121 122


class OpSeqMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        self.workflow.workflow_type = "Sequence"

B
barrierye 已提交
123 124 125 126 127 128 129
    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        if len(node.dependencies) > 1:
            raise Exception(
                'Set more than one predecessor for op in OpSeqMaker is not allowed.'
            )
M
MRXLT 已提交
130
        if len(self.workflow.nodes) >= 1:
B
barrierye 已提交
131 132 133 134 135 136 137 138 139 140 141
            if len(node.dependencies) == 0:
                dep = server_sdk.DAGNodeDependency()
                dep.name = self.workflow.nodes[-1].name
                dep.mode = "RO"
                node.dependencies.extend([dep])
            elif len(node.dependencies) == 1:
                if node.dependencies[0].name != self.workflow.nodes[-1].name:
                    raise Exception(
                        'You must add op in order in OpSeqMaker. The previous op is {}, but the current op is followed by {}.'.
                        format(node.dependencies[0].name, self.workflow.nodes[
                            -1].name))
M
MRXLT 已提交
142 143 144 145 146 147 148 149
        self.workflow.nodes.extend([node])

    def get_op_sequence(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


B
barrierye 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
class OpGraphMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        # Currently, SDK only supports "Sequence"
        self.workflow.workflow_type = "Sequence"

    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        self.workflow.nodes.extend([node])

    def get_op_graph(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


M
MRXLT 已提交
168 169 170 171 172 173 174
class Server(object):
    def __init__(self):
        self.server_handle_ = None
        self.infer_service_conf = None
        self.model_toolkit_conf = None
        self.resource_conf = None
        self.memory_optimization = False
M
MRXLT 已提交
175
        self.ir_optimization = False
M
MRXLT 已提交
176 177 178 179 180 181
        self.model_conf = None
        self.workflow_fn = "workflow.prototxt"
        self.resource_fn = "resource.prototxt"
        self.infer_service_fn = "infer_service.prototxt"
        self.model_toolkit_fn = "model_toolkit.prototxt"
        self.general_model_config_fn = "general_model.prototxt"
W
wangjiawei04 已提交
182
        self.cube_config_fn = "cube.conf"
M
MRXLT 已提交
183 184
        self.workdir = ""
        self.max_concurrency = 0
M
MRXLT 已提交
185
        self.num_threads = 4
M
MRXLT 已提交
186 187
        self.port = 8080
        self.reload_interval_s = 10
M
MRXLT 已提交
188
        self.max_body_size = 64 * 1024 * 1024
M
MRXLT 已提交
189 190
        self.module_path = os.path.dirname(paddle_serving_server.__file__)
        self.cur_path = os.getcwd()
M
MRXLT 已提交
191
        self.use_local_bin = False
M
MRXLT 已提交
192
        self.gpuid = 0
B
barrierye 已提交
193
        self.model_config_paths = None  # for multi-model in a workflow
M
MRXLT 已提交
194 195 196 197 198 199 200

    def set_max_concurrency(self, concurrency):
        self.max_concurrency = concurrency

    def set_num_threads(self, threads):
        self.num_threads = threads

M
MRXLT 已提交
201 202 203 204 205 206 207 208
    def set_max_body_size(self, body_size):
        if body_size >= self.max_body_size:
            self.max_body_size = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )

M
MRXLT 已提交
209 210 211 212 213 214 215 216 217
    def set_port(self, port):
        self.port = port

    def set_reload_interval(self, interval):
        self.reload_interval_s = interval

    def set_op_sequence(self, op_seq):
        self.workflow_conf = op_seq

B
barrierye 已提交
218 219 220
    def set_op_graph(self, op_graph):
        self.workflow_conf = op_graph

M
MRXLT 已提交
221 222 223
    def set_memory_optimize(self, flag=False):
        self.memory_optimization = flag

M
MRXLT 已提交
224 225 226
    def set_ir_optimize(self, flag=False):
        self.ir_optimization = flag

M
MRXLT 已提交
227 228 229 230
    def check_local_bin(self):
        if "SERVING_BIN" in os.environ:
            self.use_local_bin = True
            self.bin_path = os.environ["SERVING_BIN"]
M
MRXLT 已提交
231

M
MRXLT 已提交
232
    def check_cuda(self):
M
MRXLT 已提交
233
        cuda_flag = False
M
MRXLT 已提交
234 235 236
        r = os.popen("ldd {} | grep cudart".format(self.bin_path))
        r = r.read().split("=")
        if len(r) >= 2 and "cudart" in r[1] and os.system(
M
MRXLT 已提交
237 238 239
                "ls /dev/ | grep nvidia > /dev/null") == 0:
            cuda_flag = True
        if not cuda_flag:
M
MRXLT 已提交
240 241 242 243
            raise SystemExit(
                "CUDA not found, please check your environment or use cpu version by \"pip install paddle_serving_server\""
            )

M
MRXLT 已提交
244 245 246
    def set_gpuid(self, gpuid=0):
        self.gpuid = gpuid

B
barrierye 已提交
247
    def _prepare_engine(self, model_config_paths, device):
M
MRXLT 已提交
248 249 250
        if self.model_toolkit_conf == None:
            self.model_toolkit_conf = server_sdk.ModelToolkitConf()

B
barrierye 已提交
251 252 253 254 255 256 257 258 259 260 261 262
        for engine_name, model_config_path in model_config_paths.items():
            engine = server_sdk.EngineDesc()
            engine.name = engine_name
            # engine.reloadable_meta = model_config_path + "/fluid_time_file"
            engine.reloadable_meta = self.workdir + "/fluid_time_file"
            os.system("touch {}".format(engine.reloadable_meta))
            engine.reloadable_type = "timestamp_ne"
            engine.runtime_thread_num = 0
            engine.batch_infer_size = 0
            engine.enable_batch_align = 0
            engine.model_data_path = model_config_path
            engine.enable_memory_optimization = self.memory_optimization
M
MRXLT 已提交
263
            engine.enable_ir_optimization = self.ir_optimization
B
barrierye 已提交
264 265 266 267 268 269 270 271 272
            engine.static_optimization = False
            engine.force_update_static_cache = False

            if device == "cpu":
                engine.type = "FLUID_CPU_ANALYSIS_DIR"
            elif device == "gpu":
                engine.type = "FLUID_GPU_ANALYSIS_DIR"

            self.model_toolkit_conf.engines.extend([engine])
M
MRXLT 已提交
273 274 275 276 277 278 279 280 281 282 283

    def _prepare_infer_service(self, port):
        if self.infer_service_conf == None:
            self.infer_service_conf = server_sdk.InferServiceConf()
            self.infer_service_conf.port = port
            infer_service = server_sdk.InferService()
            infer_service.name = "GeneralModelService"
            infer_service.workflows.extend(["workflow1"])
            self.infer_service_conf.services.extend([infer_service])

    def _prepare_resource(self, workdir):
284
        self.workdir = workdir
M
MRXLT 已提交
285 286 287 288 289
        if self.resource_conf == None:
            with open("{}/{}".format(workdir, self.general_model_config_fn),
                      "w") as fout:
                fout.write(str(self.model_conf))
            self.resource_conf = server_sdk.ResourceConf()
W
wangjiawei04 已提交
290 291 292 293 294
            for workflow in self.workflow_conf.workflows:
                for node in workflow.nodes:
                    if "dist_kv" in node.name:
                        self.resource_conf.cube_config_path = workdir
                        self.resource_conf.cube_config_file = self.cube_config_fn
M
MRXLT 已提交
295 296 297 298 299 300 301 302 303
            self.resource_conf.model_toolkit_path = workdir
            self.resource_conf.model_toolkit_file = self.model_toolkit_fn
            self.resource_conf.general_model_path = workdir
            self.resource_conf.general_model_file = self.general_model_config_fn

    def _write_pb_str(self, filepath, pb_obj):
        with open(filepath, "w") as fout:
            fout.write(str(pb_obj))

B
barrierye 已提交
304 305 306 307
    def load_model_config(self, model_config_paths):
        # At present, Serving needs to configure the model path in
        # the resource.prototxt file to determine the input and output
        # format of the workflow. To ensure that the input and output
B
barrierye 已提交
308
        # of multiple models are the same.
B
barrierye 已提交
309 310
        workflow_oi_config_path = None
        if isinstance(model_config_paths, str):
B
barrierye 已提交
311
            # If there is only one model path, use the default infer_op.
M
MRXLT 已提交
312
            # Because there are several infer_op type, we need to find
B
barrierye 已提交
313 314 315
            # it from workflow_conf.
            default_engine_names = [
                'general_infer_0', 'general_dist_kv_infer_0',
B
barrierye 已提交
316
                'general_dist_kv_quant_infer_0'
B
barrierye 已提交
317 318
            ]
            engine_name = None
B
barrierye 已提交
319
            for node in self.workflow_conf.workflows[0].nodes:
B
barrierye 已提交
320 321 322 323 324 325 326 327 328
                if node.name in default_engine_names:
                    engine_name = node.name
                    break
            if engine_name is None:
                raise Exception(
                    "You have set the engine_name of Op. Please use the form {op: model_path} to configure model path"
                )
            self.model_config_paths = {engine_name: model_config_paths}
            workflow_oi_config_path = self.model_config_paths[engine_name]
B
barrierye 已提交
329 330 331 332 333 334 335 336
        elif isinstance(model_config_paths, dict):
            self.model_config_paths = {}
            for node_str, path in model_config_paths.items():
                node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(node_str, node)
                self.model_config_paths[node.name] = path
            print("You have specified multiple model paths, please ensure "
                  "that the input and output of multiple models are the same.")
M
MRXLT 已提交
337 338
            workflow_oi_config_path = list(self.model_config_paths.items())[0][
                1]
B
barrierye 已提交
339 340 341 342 343
        else:
            raise Exception("The type of model_config_paths must be str or "
                            "dict({op: model_path}), not {}.".format(
                                type(model_config_paths)))

M
MRXLT 已提交
344
        self.model_conf = m_config.GeneralModelConfig()
B
barrierye 已提交
345 346 347
        f = open(
            "{}/serving_server_conf.prototxt".format(workflow_oi_config_path),
            'r')
M
MRXLT 已提交
348 349 350 351 352 353 354 355 356
        self.model_conf = google.protobuf.text_format.Merge(
            str(f.read()), self.model_conf)
        # check config here
        # print config here

    def download_bin(self):
        os.chdir(self.module_path)
        need_download = False
        device_version = "serving-gpu-"
357 358
        folder_name = device_version + serving_server_version
        tar_name = folder_name + ".tar.gz"
M
MRXLT 已提交
359
        bin_url = "https://paddle-serving.bj.bcebos.com/bin/" + tar_name
360 361 362 363
        self.server_path = os.path.join(self.module_path, folder_name)

        download_flag = "{}/{}.is_download".format(self.module_path,
                                                   folder_name)
M
MRXLT 已提交
364 365 366 367 368

        #acquire lock
        version_file = open("{}/version.py".format(self.module_path), "r")
        fcntl.flock(version_file, fcntl.LOCK_EX)

369 370 371 372 373
        if os.path.exists(download_flag):
            os.chdir(self.cur_path)
            self.bin_path = self.server_path + "/serving"
            return

M
MRXLT 已提交
374
        if not os.path.exists(self.server_path):
375 376
            os.system("touch {}/{}.is_download".format(self.module_path,
                                                       folder_name))
M
MRXLT 已提交
377 378 379 380 381
            print('Frist time run, downloading PaddleServing components ...')
            r = os.system('wget ' + bin_url + ' --no-check-certificate')
            if r != 0:
                if os.path.exists(tar_name):
                    os.remove(tar_name)
M
MRXLT 已提交
382 383 384
                raise SystemExit(
                    'Download failed, please check your network or permission of {}.'.
                    format(self.module_path))
M
MRXLT 已提交
385 386 387 388 389 390 391 392 393
            else:
                try:
                    print('Decompressing files ..')
                    tar = tarfile.open(tar_name)
                    tar.extractall()
                    tar.close()
                except:
                    if os.path.exists(exe_path):
                        os.remove(exe_path)
M
MRXLT 已提交
394 395 396
                    raise SystemExit(
                        'Decompressing failed, please check your permission of {} or disk space left.'.
                        format(self.module_path))
M
MRXLT 已提交
397 398
                finally:
                    os.remove(tar_name)
M
MRXLT 已提交
399
        #release lock
B
barrierye 已提交
400
        version_file.close()
M
MRXLT 已提交
401 402 403 404 405 406 407 408 409 410 411
        os.chdir(self.cur_path)
        self.bin_path = self.server_path + "/serving"

    def prepare_server(self, workdir=None, port=9292, device="cpu"):
        if workdir == None:
            workdir = "./tmp"
            os.system("mkdir {}".format(workdir))
        else:
            os.system("mkdir {}".format(workdir))
        os.system("touch {}/fluid_time_file".format(workdir))

M
MRXLT 已提交
412
        if not self.port_is_available(port):
M
MRXLT 已提交
413 414
            raise SystemExit("Prot {} is already used".format(port))

G
guru4elephant 已提交
415
        self.set_port(port)
M
MRXLT 已提交
416
        self._prepare_resource(workdir)
B
barrierye 已提交
417
        self._prepare_engine(self.model_config_paths, device)
M
MRXLT 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430
        self._prepare_infer_service(port)
        self.workdir = workdir

        infer_service_fn = "{}/{}".format(workdir, self.infer_service_fn)
        workflow_fn = "{}/{}".format(workdir, self.workflow_fn)
        resource_fn = "{}/{}".format(workdir, self.resource_fn)
        model_toolkit_fn = "{}/{}".format(workdir, self.model_toolkit_fn)

        self._write_pb_str(infer_service_fn, self.infer_service_conf)
        self._write_pb_str(workflow_fn, self.workflow_conf)
        self._write_pb_str(resource_fn, self.resource_conf)
        self._write_pb_str(model_toolkit_fn, self.model_toolkit_conf)

M
MRXLT 已提交
431
    def port_is_available(self, port):
M
MRXLT 已提交
432 433
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
434
            result = sock.connect_ex(('0.0.0.0', port))
M
MRXLT 已提交
435 436 437 438 439
        if result != 0:
            return True
        else:
            return False

M
MRXLT 已提交
440 441 442
    def run_server(self):
        # just run server with system command
        # currently we do not load cube
M
MRXLT 已提交
443
        self.check_local_bin()
M
MRXLT 已提交
444 445
        if not self.use_local_bin:
            self.download_bin()
B
fix bug  
barrierye 已提交
446 447 448
            # wait for other process to download server bin
            while not os.path.exists(self.server_path):
                time.sleep(1)
M
MRXLT 已提交
449 450
        else:
            print("Use local bin : {}".format(self.bin_path))
M
MRXLT 已提交
451
        self.check_cuda()
M
MRXLT 已提交
452 453 454 455 456 457 458 459 460 461 462
        command = "{} " \
                  "-enable_model_toolkit " \
                  "-inferservice_path {} " \
                  "-inferservice_file {} " \
                  "-max_concurrency {} " \
                  "-num_threads {} " \
                  "-port {} " \
                  "-reload_interval_s {} " \
                  "-resource_path {} " \
                  "-resource_file {} " \
                  "-workflow_path {} " \
M
MRXLT 已提交
463 464
                  "-workflow_file {} " \
                  "-bthread_concurrency {} " \
M
MRXLT 已提交
465 466
                  "-gpuid {} " \
                  "-max_body_size {} ".format(
M
MRXLT 已提交
467 468 469 470 471 472 473 474 475 476
                      self.bin_path,
                      self.workdir,
                      self.infer_service_fn,
                      self.max_concurrency,
                      self.num_threads,
                      self.port,
                      self.reload_interval_s,
                      self.workdir,
                      self.resource_fn,
                      self.workdir,
M
MRXLT 已提交
477 478
                      self.workflow_fn,
                      self.num_threads,
M
MRXLT 已提交
479 480
                      self.gpuid,
                      self.max_body_size)
M
MRXLT 已提交
481 482
        print("Going to Run Comand")
        print(command)
483

M
MRXLT 已提交
484
        os.system(command)
B
barrierye 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529


class MultiLangServerService(
        multi_lang_general_model_service_pb2_grpc.MultiLangGeneralModelService):
    def __init__(self, model_config_path, endpoints):
        from paddle_serving_client import Client
        self._parse_model_config(model_config_path)
        self.bclient_ = Client()
        self.bclient_.load_client_config(
            "{}/serving_server_conf.prototxt".format(model_config_path))
        self.bclient_.connect(endpoints)

    def _parse_model_config(self, model_config_path):
        model_conf = m_config.GeneralModelConfig()
        f = open("{}/serving_server_conf.prototxt".format(model_config_path),
                 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
        self.feed_shapes_ = {}
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_types_ = {}
        self.lod_tensor_set_ = set()
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_types_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)

    def _flatten_list(self, nested_list):
        for item in nested_list:
            if isinstance(item, (list, tuple)):
                for sub_item in self._flatten_list(item):
                    yield sub_item
            else:
                yield item

    def _unpack_request(self, request):
        feed_names = list(request.feed_var_names)
        fetch_names = list(request.fetch_var_names)
B
barrierye 已提交
530
        is_python = request.is_python
B
barrierye 已提交
531 532 533 534
        feed_batch = []
        for feed_inst in request.insts:
            feed_dict = {}
            for idx, name in enumerate(feed_names):
B
barrierye 已提交
535
                var = feed_inst.tensor_array[idx]
B
barrierye 已提交
536 537
                v_type = self.feed_types_[name]
                data = None
B
barrierye 已提交
538 539 540 541 542 543 544
                if is_python:
                    if v_type == 0:
                        data = np.frombuffer(var.data, dtype="int64")
                    elif v_type == 1:
                        data = np.frombuffer(var.data, dtype="float32")
                    else:
                        raise Exception("error type.")
B
barrierye 已提交
545
                else:
B
barrierye 已提交
546 547 548 549 550 551 552
                    if v_type == 0:  # int64
                        data = np.array(list(var.int64_data), dtype="int64")
                    elif v_type == 1:  # float32
                        data = np.array(list(var.float_data), dtype="float32")
                    else:
                        raise Exception("error type.")
                data.shape = list(feed_inst.tensor_array[idx].shape)
B
barrierye 已提交
553 554
                feed_dict[name] = data
            feed_batch.append(feed_dict)
B
barrierye 已提交
555
        return feed_batch, fetch_names, is_python
B
barrierye 已提交
556

B
barrierye 已提交
557
    def _pack_resp_package(self, result, fetch_names, is_python, tag):
B
barrierye 已提交
558 559 560 561 562 563 564
        resp = multi_lang_general_model_service_pb2.Response()
        # Only one model is supported temporarily
        model_output = multi_lang_general_model_service_pb2.ModelOutput()
        inst = multi_lang_general_model_service_pb2.FetchInst()
        for idx, name in enumerate(fetch_names):
            tensor = multi_lang_general_model_service_pb2.Tensor()
            v_type = self.fetch_types_[name]
B
barrierye 已提交
565 566
            if is_python:
                tensor.data = result[name].tobytes()
B
barrierye 已提交
567
            else:
B
barrierye 已提交
568 569 570 571 572 573
                if v_type == 0:  # int64
                    tensor.int64_data.extend(result[name].reshape(-1).tolist())
                elif v_type == 1:  # float32
                    tensor.float_data.extend(result[name].reshape(-1).tolist())
                else:
                    raise Exception("error type.")
B
barrierye 已提交
574 575 576 577 578 579 580 581 582 583
            tensor.shape.extend(list(result[name].shape))
            if name in self.lod_tensor_set_:
                tensor.lod.extend(result["{}.lod".format(name)].tolist())
            inst.tensor_array.append(tensor)
        model_output.insts.append(inst)
        resp.outputs.append(model_output)
        resp.tag = tag
        return resp

    def inference(self, request, context):
B
barrierye 已提交
584
        feed_dict, fetch_names, is_python = self._unpack_request(request)
B
barrierye 已提交
585 586
        data, tag = self.bclient_.predict(
            feed=feed_dict, fetch=fetch_names, need_variant_tag=True)
B
barrierye 已提交
587
        return self._pack_resp_package(data, fetch_names, is_python, tag)
B
barrierye 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639


class MultiLangServer(object):
    def __init__(self, worker_num=2):
        self.bserver_ = Server()
        self.worker_num_ = worker_num

    def set_op_sequence(self, op_seq):
        self.bserver_.set_op_sequence(op_seq)

    def load_model_config(self, model_config_path):
        if not isinstance(model_config_path, str):
            raise Exception(
                "MultiLangServer only supports multi-model temporarily")
        self.bserver_.load_model_config(model_config_path)
        self.model_config_path_ = model_config_path

    def prepare_server(self, workdir=None, port=9292, device="cpu"):
        default_port = 12000
        self.port_list_ = []
        for i in range(1000):
            if default_port + i != port and self._port_is_available(default_port
                                                                    + i):
                self.port_list_.append(default_port + i)
                break
        self.bserver_.prepare_server(
            workdir=workdir, port=self.port_list_[0], device=device)
        self.gport_ = port

    def _launch_brpc_service(self, bserver):
        bserver.run_server()

    def _port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        return result != 0

    def run_server(self):
        p_bserver = Process(
            target=self._launch_brpc_service, args=(self.bserver_, ))
        p_bserver.start()
        server = grpc.server(
            futures.ThreadPoolExecutor(max_workers=self.worker_num_))
        multi_lang_general_model_service_pb2_grpc.add_MultiLangGeneralModelServiceServicer_to_server(
            MultiLangServerService(self.model_config_path_,
                                   ["0.0.0.0:{}".format(self.port_list_[0])]),
            server)
        server.add_insecure_port('[::]:{}'.format(self.gport_))
        server.start()
        p_bserver.join()
        server.wait_for_termination()