__init__.py 8.8 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
MRXLT 已提交
15 16
import paddle_serving_client
import os
17 18 19
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
G
guru4elephant 已提交
20
import time
21
import sys
G
guru4elephant 已提交
22

G
guru4elephant 已提交
23 24 25
int_type = 0
float_type = 1

M
MRXLT 已提交
26

G
guru4elephant 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
        self.endpoints = []

    def set_server_endpoints(self, endpoints):
        self.endpoints = endpoints

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
G
guru4elephant 已提交
41
        predictor_desc.weighted_random_render_conf.variant_weight_list = "100"
G
guru4elephant 已提交
42 43 44

        variant_desc = sdk.VariantConf()
        variant_desc.tag = "var1"
M
MRXLT 已提交
45 46
        variant_desc.naming_conf.cluster = "list://{}".format(":".join(
            self.endpoints))
G
guru4elephant 已提交
47 48 49 50 51 52 53 54 55 56 57 58

        predictor_desc.variants.extend([variant_desc])

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
59

G
guru4elephant 已提交
60 61 62 63 64 65 66 67
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
68
        return self.sdk_desc
G
guru4elephant 已提交
69

G
guru4elephant 已提交
70 71 72 73 74 75

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
76
        self.result_handle_ = None
M
MRXLT 已提交
77
        self.feed_shapes_ = {}
G
guru4elephant 已提交
78
        self.feed_types_ = {}
G
guru4elephant 已提交
79
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
80
        self.rpath()
M
MRXLT 已提交
81
        self.pid = os.getpid()
G
guru4elephant 已提交
82 83
        self.producers = []
        self.consumer = None
M
MRXLT 已提交
84 85 86 87 88 89 90

    def rpath(self):
        lib_path = os.path.dirname(paddle_serving_client.__file__)
        client_path = os.path.join(lib_path, 'serving_client.so')
        lib_path = os.path.join(lib_path, 'lib')
        os.popen('patchelf --set-rpath {} {}'.format(lib_path, client_path))

G
guru4elephant 已提交
91
    def load_client_config(self, path):
M
MRXLT 已提交
92
        from .serving_client import PredictorClient
93
        from .serving_client import PredictorRes
94 95 96 97 98
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
99 100 101 102
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
103
        self.result_handle_ = PredictorRes()
G
guru4elephant 已提交
104 105
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
106
        read_env_flags = ["profile_client", "profile_server"]
M
MRXLT 已提交
107 108
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
109 110
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
111
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
112 113
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
114
        self.lod_tensor_set = set()
M
MRXLT 已提交
115
        self.feed_tensor_len = {}
116 117 118
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
119
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
120

M
MRXLT 已提交
121 122
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
123 124 125 126 127
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
128

G
guru4elephant 已提交
129 130 131 132
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type

G
guru4elephant 已提交
133 134
        return

G
guru4elephant 已提交
135
    def connect(self, endpoints):
G
guru4elephant 已提交
136 137 138
        # check whether current endpoint is available
        # init from client config
        # create predictor here
G
guru4elephant 已提交
139 140 141
        predictor_sdk = SDKConfig()
        predictor_sdk.set_server_endpoints(endpoints)
        sdk_desc = predictor_sdk.gen_desc()
M
MRXLT 已提交
142 143
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
144 145 146 147 148 149 150

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
151 152 153 154
    def shape_check(self, feed, key):
        seq_shape = 1
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
155
        if len(feed[key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
156 157 158
            raise SystemExit("The shape of feed tensor {} not match.".format(
                key))

159
    def predict(self, feed=None, fetch=None):
G
guru4elephant 已提交
160 161 162
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
            raise ValueError("fetch only accepts string and list of string")

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
            raise ValueError("feed only accepts dict and list of dict")
G
guru4elephant 已提交
178

M
MRXLT 已提交
179 180 181 182 183
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
        fetch_names = []
M
MRXLT 已提交
184
        counter = 0
M
MRXLT 已提交
185
        batch_size = len(feed_batch)
186 187 188 189 190 191 192 193 194 195

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
                "fetch names should not be empty or out of saved fetch list")
            return {}

G
guru4elephant 已提交
196
        for i, feed_i in enumerate(feed_batch):
M
MRXLT 已提交
197 198
            int_slot = []
            float_slot = []
199
            for key in feed_i:
M
MRXLT 已提交
200 201 202
                if key not in self.feed_names_:
                    continue
                if self.feed_types_[key] == int_type:
G
guru4elephant 已提交
203
                    if i == 0:
M
MRXLT 已提交
204
                        int_feed_names.append(key)
M
MRXLT 已提交
205 206
                    int_slot.append(feed[key])
                elif self.feed_types_[key] == float_type:
G
guru4elephant 已提交
207
                    if i == 0:
M
MRXLT 已提交
208
                        float_feed_names.append(key)
209
                    float_slot.append(feed_i[key])
M
MRXLT 已提交
210 211 212
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

M
MRXLT 已提交
213
        result_batch = self.result_handle_
M
MRXLT 已提交
214
        res = self.client_handle_.batch_predict(
M
MRXLT 已提交
215
            float_slot_batch, float_feed_names, int_slot_batch, int_feed_names,
M
MRXLT 已提交
216
            fetch_names, result_batch, self.pid)
M
MRXLT 已提交
217 218

        result_map_batch = []
M
MRXLT 已提交
219 220 221 222 223 224 225 226 227 228 229
        result_map = {}
        for i, name in enumerate(fetch_names):
            if self.fetch_names_to_type_[name] == int_type:
                result_map[name] = result_batch.get_int64_by_name(name)
            elif self.fetch_names_to_type_[name] == float_type:
                result_map[name] = result_batch.get_float_by_name(name)
        for i in range(batch_size):
            single_result = {}
            for key in result_map:
                single_result[key] = result_map[key][i]
            result_map_batch.append(single_result)
M
MRXLT 已提交
230

G
guru4elephant 已提交
231 232 233 234
        if batch_size == 1:
            return result_map_batch[0]
        else:
            return result_map_batch
235 236 237

    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
238
        self.client_handle_ = None