提交 c1a96315 编写于 作者: M MRXLT

use PredictorRes

上级 9c3bd01d
......@@ -59,18 +59,6 @@ class PredictorRes {
std::map<std::string, std::vector<std::vector<float>>> _float_map;
};
class PredictorResBatch {
public:
PredictorResBatch() {}
~PredictorResBatch() {}
public:
const PredictorRes& at(const int index) { return _predictres_vector[index]; }
public:
std::vector<PredictorRes> _predictres_vector;
};
class PredictorClient {
public:
PredictorClient() {}
......@@ -96,28 +84,13 @@ class PredictorClient {
PredictorRes& predict_res, // NOLINT
const int& pid);
std::vector<std::vector<float>> predict(
const std::vector<std::vector<float>>& float_feed,
const std::vector<std::string>& float_feed_name,
const std::vector<std::vector<int64_t>>& int_feed,
const std::vector<std::string>& int_feed_name,
const std::vector<std::string>& fetch_name);
int batch_predict(
const std::vector<std::vector<std::vector<float>>>& float_feed_batch,
const std::vector<std::string>& float_feed_name,
const std::vector<std::vector<std::vector<int64_t>>>& int_feed_batch,
const std::vector<std::string>& int_feed_name,
const std::vector<std::string>& fetch_name,
PredictorResBatch& predict_res, // NOLINT
const int& pid);
std::vector<PredictorRes> batch_predict(
const std::vector<std::vector<std::vector<float>>>& float_feed_batch,
const std::vector<std::string>& float_feed_name,
const std::vector<std::vector<std::vector<int64_t>>>& int_feed_batch,
const std::vector<std::string>& int_feed_name,
const std::vector<std::string>& fetch_name,
PredictorRes& predict_res_batch, // NOLINT
const int& pid);
private:
......
......@@ -270,14 +270,15 @@ int PredictorClient::batch_predict(
const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
const std::vector<std::string> &int_feed_name,
const std::vector<std::string> &fetch_name,
PredictorResBatch &predict_res_batch,
PredictorRes &predict_res_batch,
const int &pid) {
int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
predict_res_batch._int64_map.clear();
predict_res_batch._float_map.clear();
Timer timeline;
int64_t preprocess_start = timeline.TimeStampUS();
predict_res_batch._predictres_vector.resize(batch_size);
int fetch_name_num = fetch_name.size();
_api.thrd_clear();
......@@ -366,37 +367,33 @@ int PredictorClient::batch_predict(
} else {
client_infer_end = timeline.TimeStampUS();
postprocess_start = client_infer_end;
for (auto &name : fetch_name) {
predict_res_batch._int64_map[name].resize(batch_size);
predict_res_batch._float_map[name].resize(batch_size);
}
for (int bi = 0; bi < batch_size; bi++) {
predict_res_batch._predictres_vector[bi]._int64_map.clear();
predict_res_batch._predictres_vector[bi]._float_map.clear();
for (auto &name : fetch_name) {
int idx = _fetch_name_to_idx[name];
int len = res.insts(bi).tensor_array(idx).data_size();
if (_fetch_name_to_type[name] == 0) {
int len = res.insts(bi).tensor_array(idx).int64_data_size();
VLOG(2) << "fetch tensor : " << name << " type: int64 len : " << len;
predict_res_batch._predictres_vector[bi]._int64_map[name].resize(1);
predict_res_batch._predictres_vector[bi]._int64_map[name]
[0].resize(len);
predict_res_batch._int64_map[name][bi].resize(len);
VLOG(2) << "fetch name " << name << " index " << idx << " first data "
<< res.insts(bi).tensor_array(idx).int64_data(0);
for (int i = 0; i < len; ++i) {
predict_res_batch._predictres_vector[bi]._int64_map[name][0][i] =
predict_res_batch._int64_map[name][bi][i] =
res.insts(bi).tensor_array(idx).int64_data(i);
}
} else if (_fetch_name_to_type[name] == 1) {
int len = res.insts(bi).tensor_array(idx).float_data_size();
VLOG(2) << "fetch tensor : " << name
<< " type: float32 len : " << len;
predict_res_batch._predictres_vector[bi]._float_map[name].resize(1);
predict_res_batch._predictres_vector[bi]._float_map[name]
[0].resize(len);
predict_res_batch._float_map[name][bi].resize(len);
VLOG(2) << "fetch name " << name << " index " << idx << " first data "
<< res.insts(bi).tensor_array(idx).float_data(0);
for (int i = 0; i < len; ++i) {
predict_res_batch._predictres_vector[bi]._float_map[name][0][i] =
predict_res_batch._float_map[name][bi][i] =
res.insts(bi).tensor_array(idx).float_data(i);
}
}
......
......@@ -41,12 +41,6 @@ PYBIND11_MODULE(serving_client, m) {
},
py::return_value_policy::reference);
py::class_<PredictorResBatch>(m, "PredictorResBatch", py::buffer_protocol())
.def(py::init())
.def("at",
[](PredictorResBatch &self, int index) { return self.at(index); },
py::return_value_policy::reference);
py::class_<PredictorClient>(m, "PredictorClient", py::buffer_protocol())
.def(py::init())
.def("init_gflags",
......@@ -97,7 +91,7 @@ PYBIND11_MODULE(serving_client, m) {
&int_feed_batch,
const std::vector<std::string> &int_feed_name,
const std::vector<std::string> &fetch_name,
PredictorResBatch &predict_res_batch,
PredictorRes &predict_res_batch,
const int &pid) {
return self.batch_predict(float_feed_batch,
float_feed_name,
......
......@@ -89,7 +89,6 @@ class Client(object):
def load_client_config(self, path):
from .serving_client import PredictorClient
from .serving_client import PredictorRes
from .serving_client import PredictorResBatch
model_conf = m_config.GeneralModelConfig()
f = open(path, 'r')
model_conf = google.protobuf.text_format.Merge(
......@@ -100,7 +99,6 @@ class Client(object):
# get feed shapes, feed types
# map feed names to index
self.result_handle_ = PredictorRes()
self.result_batch_handle_ = PredictorResBatch()
self.client_handle_ = PredictorClient()
self.client_handle_.init(path)
read_env_flags = ["profile_client", "profile_server"]
......@@ -205,20 +203,21 @@ class Client(object):
if key in self.fetch_names_:
fetch_names.append(key)
result_batch = self.result_batch_handle_
result_batch = self.result_handle_
res = self.client_handle_.batch_predict(
float_slot_batch, float_feed_names, int_slot_batch, int_feed_names,
fetch_names, result_batch, self.pid)
result_map_batch = []
for index in range(batch_size):
result = result_batch.at(index)
result_map = {}
for i, name in enumerate(fetch_names):
if self.fetch_names_to_type_[name] == int_type:
result_map[name] = result.get_int64_by_name(name)[0]
result_map[name] = result_batch.get_int64_by_name(name)[
index]
elif self.fetch_names_to_type_[name] == float_type:
result_map[name] = result.get_float_by_name(name)[0]
result_map[name] = result_batch.get_float_by_name(name)[
index]
result_map_batch.append(result_map)
return result_map_batch
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册