fluid_arm_engine.h 7.3 KB
Newer Older
Z
zhangjun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <pthread.h>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include "core/configure/include/configure_parser.h"
#include "core/configure/inferencer_configure.pb.h"
#include "core/predictor/framework/infer.h"
#include "paddle_inference_api.h"  // NOLINT

namespace baidu {
namespace paddle_serving {
namespace fluid_arm {

class AutoLock {
 public:
  explicit AutoLock(pthread_mutex_t& mutex) : _mut(mutex) {
    pthread_mutex_lock(&mutex);
  }

  ~AutoLock() { pthread_mutex_unlock(&_mut); }

 private:
  pthread_mutex_t& _mut;
};

class GlobalPaddleCreateMutex {
 public:
  pthread_mutex_t& mutex() { return _mut; }

  static pthread_mutex_t& instance() {
    static GlobalPaddleCreateMutex gmutex;
    return gmutex.mutex();
  }

 private:
  GlobalPaddleCreateMutex() { pthread_mutex_init(&_mut, NULL); }

  pthread_mutex_t _mut;
};

58 59 60 61 62
using paddle_infer::Config;
using paddle_infer::Predictor;
using paddle_infer::Tensor;
using paddle_infer::PrecisionType;
using paddle_infer::CreatePredictor;
Z
zhangjun 已提交
63 64 65 66 67

// data interface
class FluidFamilyCore {
 public:
  virtual ~FluidFamilyCore() {}
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  virtual std::vector<std::string> GetInputNames() {
    return _core->GetInputNames();
  }

  virtual std::unique_ptr<Tensor> GetInputHandle(const std::string& name) {
    return _core->GetInputHandle(name);
  }

  virtual std::vector<std::string> GetOutputNames() {
    return _core->GetOutputNames();
  }

  virtual std::unique_ptr<Tensor> GetOutputHandle(const std::string& name) {
    return _core->GetOutputHandle(name);
  }

  virtual bool Run() {
    if (!_core->Run()) {
Z
zhangjun 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
      LOG(ERROR) << "Failed call Run with paddle predictor";
      return false;
    }
    return true;
  }

  virtual int create(const predictor::InferEngineCreationParams& params) = 0;

  virtual int clone(void* origin_core) {
    if (origin_core == NULL) {
      LOG(ERROR) << "origin paddle Predictor is null.";
      return -1;
    }
99
    Predictor* p_predictor = (Predictor*)origin_core;
Z
zhangjun 已提交
100 101 102 103 104 105 106 107 108 109 110
    _core = p_predictor->Clone();
    if (_core.get() == NULL) {
      LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
      return -1;
    }
    return 0;
  }

  virtual void* get() { return _core.get(); }

 protected:
111
  std::shared_ptr<Predictor> _core;
Z
zhangjun 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
};

// infer interface
class FluidArmAnalysisCore : public FluidFamilyCore {
 public:
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

125 126 127 128 129 130
    Config config;
    config.SetParamsFile(data_path + "/__params__");
    config.SetProgFile(data_path + "/__model__");
    config.DisableGpu();
    config.SetCpuMathLibraryNumThreads(1);

Z
zhangjun 已提交
131
    if (params.use_lite()) {
132
      config.EnableLiteEngine(PrecisionType::kFloat32, true);
Z
zhangjun 已提交
133 134
    }

Z
zhangjun 已提交
135
    if (params.use_xpu()) {
Z
zhangjun 已提交
136
      config.EnableXpu(2 * 1024 * 1024);
Z
zhangjun 已提交
137 138
    }

Z
update  
zhangjun 已提交
139 140 141 142 143 144 145 146 147 148
    if (params.enable_memory_optimization()) {
      config.EnableMemoryOptim();
    }

    if (params.enable_ir_optimization()) {
      config.SwitchIrOptim(true);
    } else {
      config.SwitchIrOptim(false);
    }

149
    config.SwitchSpecifyInputNames(true);
Z
zhangjun 已提交
150
    AutoLock lock(GlobalPaddleCreateMutex::instance());
151
    _core = CreatePredictor(config);
Z
zhangjun 已提交
152 153 154 155 156
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

157
    VLOG(2) << "create paddle predictor sucess, path: " << data_path;
Z
zhangjun 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171
    return 0;
  }
};

class FluidArmAnalysisDirCore : public FluidFamilyCore {
 public:
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

172 173 174 175 176
    Config config;
    config.SetModel(data_path);
    config.DisableGpu();
    config.SwitchSpecifyInputNames(true);
    config.SetCpuMathLibraryNumThreads(1);
Z
zhangjun 已提交
177

Z
update  
zhangjun 已提交
178 179 180 181 182 183 184 185
    if (params.use_lite()) {
      config.EnableLiteEngine(PrecisionType::kFloat32, true);
    }

    if (params.use_xpu()) {
      config.EnableXpu(2 * 1024 * 1024);
    }

Z
zhangjun 已提交
186
    if (params.enable_memory_optimization()) {
187
      config.EnableMemoryOptim();
Z
zhangjun 已提交
188 189 190
    }

    if (params.enable_ir_optimization()) {
191
      config.SwitchIrOptim(true);
Z
zhangjun 已提交
192
    } else {
193
      config.SwitchIrOptim(false);
Z
zhangjun 已提交
194 195 196
    }

    AutoLock lock(GlobalPaddleCreateMutex::instance());
197
    _core = CreatePredictor(config);
Z
zhangjun 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    VLOG(2) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

class Parameter {
 public:
  Parameter() : _row(0), _col(0), _params(NULL) {}
  ~Parameter() {
    VLOG(2) << "before destroy Parameter, file_name[" << _file_name << "]";
    destroy();
  }

  int init(int row, int col, const char* file_name) {
    destroy();
    _file_name = file_name;
    _row = row;
    _col = col;
    _params = reinterpret_cast<float*>(malloc(_row * _col * sizeof(float)));
    if (_params == NULL) {
      LOG(ERROR) << "Load " << _file_name << " malloc error.";
      return -1;
    }
    VLOG(2) << "Load parameter file[" << _file_name << "] success.";
    return 0;
  }

  void destroy() {
    _row = 0;
    _col = 0;
    if (_params != NULL) {
      free(_params);
      _params = NULL;
    }
  }

  int load() {
    if (_params == NULL || _row <= 0 || _col <= 0) {
      LOG(ERROR) << "load parameter error [not inited].";
      return -1;
    }

    FILE* fs = fopen(_file_name.c_str(), "rb");
    if (fs == NULL) {
      LOG(ERROR) << "load " << _file_name << " fopen error.";
      return -1;
    }
    static const uint32_t MODEL_FILE_HEAD_LEN = 16;
    char head[MODEL_FILE_HEAD_LEN] = {0};
    if (fread(head, 1, MODEL_FILE_HEAD_LEN, fs) != MODEL_FILE_HEAD_LEN) {
      destroy();
      LOG(ERROR) << "Load " << _file_name << " read head error.";
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
    }

    uint32_t matrix_size = _row * _col;
    if (matrix_size == fread(_params, sizeof(float), matrix_size, fs)) {
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      VLOG(2) << "load " << _file_name << " read ok.";
      return 0;
    } else {
      LOG(ERROR) << "load " << _file_name << " read error.";
      destroy();
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
    }
    return 0;
  }

 public:
  std::string _file_name;
  int _row;
  int _col;
  float* _params;
};

}  // namespace fluid_arm
}  // namespace paddle_serving
}  // namespace baidu