提交 f02b4276 编写于 作者: Z zhangjun

support arm platform use paddle-lite

上级 07d571ce
...@@ -49,6 +49,8 @@ set(THIRD_PARTY_BUILD_TYPE Release) ...@@ -49,6 +49,8 @@ set(THIRD_PARTY_BUILD_TYPE Release)
option(WITH_AVX "Compile Paddle Serving with AVX intrinsics" OFF) option(WITH_AVX "Compile Paddle Serving with AVX intrinsics" OFF)
option(WITH_MKL "Compile Paddle Serving with MKL support." OFF) option(WITH_MKL "Compile Paddle Serving with MKL support." OFF)
option(WITH_GPU "Compile Paddle Serving with NVIDIA GPU" OFF) option(WITH_GPU "Compile Paddle Serving with NVIDIA GPU" OFF)
option(WITH_LITE "Compile Paddle Serving with NVIDIA GPU" OFF)
option(WITH_XPU "Compile Paddle Serving with NVIDIA GPU" OFF)
option(CLIENT "Compile Paddle Serving Client" OFF) option(CLIENT "Compile Paddle Serving Client" OFF)
option(SERVER "Compile Paddle Serving Server" OFF) option(SERVER "Compile Paddle Serving Server" OFF)
option(APP "Compile Paddle Serving App package" OFF) option(APP "Compile Paddle Serving App package" OFF)
......
...@@ -45,6 +45,10 @@ message EngineDesc { ...@@ -45,6 +45,10 @@ message EngineDesc {
optional bool force_update_static_cache = 15; optional bool force_update_static_cache = 15;
optional bool enable_ir_optimization = 16; optional bool enable_ir_optimization = 16;
optional bool use_trt = 17; optional bool use_trt = 17;
optional bool use_lite = 18;
optional bool use_xpu = 19;
};
};
}; };
// model_toolkit conf // model_toolkit conf
......
...@@ -39,6 +39,10 @@ class InferEngineCreationParams { ...@@ -39,6 +39,10 @@ class InferEngineCreationParams {
_static_optimization = false; _static_optimization = false;
_force_update_static_cache = false; _force_update_static_cache = false;
_use_trt = false; _use_trt = false;
_use_lite = false;
_use_xpu = false;
}
}
} }
void set_path(const std::string& path) { _path = path; } void set_path(const std::string& path) { _path = path; }
...@@ -53,6 +57,10 @@ class InferEngineCreationParams { ...@@ -53,6 +57,10 @@ class InferEngineCreationParams {
void set_use_trt(bool use_trt) { _use_trt = use_trt; } void set_use_trt(bool use_trt) { _use_trt = use_trt; }
void set_use_lite(bool use_lite) { _use_lite = use_lite; }
void set_use_xpu(bool use_xpu) { _use_xpu = use_xpu; }
bool enable_memory_optimization() const { bool enable_memory_optimization() const {
return _enable_memory_optimization; return _enable_memory_optimization;
} }
...@@ -61,6 +69,10 @@ class InferEngineCreationParams { ...@@ -61,6 +69,10 @@ class InferEngineCreationParams {
bool use_trt() const { return _use_trt; } bool use_trt() const { return _use_trt; }
bool use_lite() const { return _use_lite; }
bool use_xpu() const { return _use_xpu; }
void set_static_optimization(bool static_optimization = false) { void set_static_optimization(bool static_optimization = false) {
_static_optimization = static_optimization; _static_optimization = static_optimization;
} }
...@@ -80,6 +92,9 @@ class InferEngineCreationParams { ...@@ -80,6 +92,9 @@ class InferEngineCreationParams {
<< "model_path = " << _path << ", " << "model_path = " << _path << ", "
<< "enable_memory_optimization = " << _enable_memory_optimization << "enable_memory_optimization = " << _enable_memory_optimization
<< ", " << ", "
<< "enable_tensorrt = " << _enable_tensorrt << ", "
<< "enable_lite = " << _enable_lite << ", "
<< "enable_xpu = " << _enable_xpu << ", "
<< "enable_ir_optimization = " << _enable_ir_optimization << ", " << "enable_ir_optimization = " << _enable_ir_optimization << ", "
<< "static_optimization = " << _static_optimization << ", " << "static_optimization = " << _static_optimization << ", "
<< "force_update_static_cache = " << _force_update_static_cache; << "force_update_static_cache = " << _force_update_static_cache;
...@@ -92,6 +107,8 @@ class InferEngineCreationParams { ...@@ -92,6 +107,8 @@ class InferEngineCreationParams {
bool _static_optimization; bool _static_optimization;
bool _force_update_static_cache; bool _force_update_static_cache;
bool _use_trt; bool _use_trt;
bool _use_lite;
bool _use_xpu;
}; };
class InferEngine { class InferEngine {
...@@ -182,6 +199,14 @@ class ReloadableInferEngine : public InferEngine { ...@@ -182,6 +199,14 @@ class ReloadableInferEngine : public InferEngine {
_infer_engine_params.set_use_trt(conf.use_trt()); _infer_engine_params.set_use_trt(conf.use_trt());
} }
if (conf.has_use_lite()) {
_infer_engine_params.set_use_lite(conf.use_lite());
}
if (conf.has_use_trt()) {
_infer_engine_params.set_use_xpu(conf.use_xpu());
}
if (!check_need_reload() || load(_infer_engine_params) != 0) { if (!check_need_reload() || load(_infer_engine_params) != 0) {
LOG(ERROR) << "Failed load model_data_path" << _model_data_path; LOG(ERROR) << "Failed load model_data_path" << _model_data_path;
return -1; return -1;
......
...@@ -14,7 +14,12 @@ ...@@ -14,7 +14,12 @@
if (NOT CLIENT_ONLY) if (NOT CLIENT_ONLY)
add_subdirectory(inferencer-fluid-cpu) add_subdirectory(inferencer-fluid-cpu)
if (WITH_GPU) if (WITH_GPU)
add_subdirectory(inferencer-fluid-gpu) add_subdirectory(inferencer-fluid-gpu)
endif() endif()
if (WITH_LITE)
add_subdirectory(inferencer-fluid-arm)
endif()
endif() endif()
FILE(GLOB fluid_arm_engine_srcs ${CMAKE_CURRENT_LIST_DIR}/src/*.cpp)
add_library(fluid_arm_engine ${fluid_arm_engine_srcs})
target_include_directories(fluid_arm_engine PUBLIC
${CMAKE_BINARY_DIR}/Paddle/fluid_install_dir/)
add_dependencies(fluid_arm_engine pdserving extern_paddle configure)
target_link_libraries(fluid_arm_engine pdserving paddle_fluid -lpthread -lcrypto -lm -lrt -lssl -ldl -lz)
install(TARGETS fluid_arm_engine
ARCHIVE DESTINATION ${PADDLE_SERVING_INSTALL_DIR}/lib
)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <pthread.h>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include "core/configure/include/configure_parser.h"
#include "core/configure/inferencer_configure.pb.h"
#include "core/predictor/framework/infer.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
namespace fluid_arm {
using configure::SigmoidConf;
class AutoLock {
public:
explicit AutoLock(pthread_mutex_t& mutex) : _mut(mutex) {
pthread_mutex_lock(&mutex);
}
~AutoLock() { pthread_mutex_unlock(&_mut); }
private:
pthread_mutex_t& _mut;
};
class GlobalPaddleCreateMutex {
public:
pthread_mutex_t& mutex() { return _mut; }
static pthread_mutex_t& instance() {
static GlobalPaddleCreateMutex gmutex;
return gmutex.mutex();
}
private:
GlobalPaddleCreateMutex() { pthread_mutex_init(&_mut, NULL); }
pthread_mutex_t _mut;
};
class GlobalSigmoidCreateMutex {
public:
pthread_mutex_t& mutex() { return _mut; }
static pthread_mutex_t& instance() {
static GlobalSigmoidCreateMutex gmutex;
return gmutex.mutex();
}
private:
GlobalSigmoidCreateMutex() { pthread_mutex_init(&_mut, NULL); }
pthread_mutex_t _mut;
};
// data interface
class FluidFamilyCore {
public:
virtual ~FluidFamilyCore() {}
virtual bool Run(const void* in_data, void* out_data) {
if (!_core->Run(*(std::vector<paddle::PaddleTensor>*)in_data,
(std::vector<paddle::PaddleTensor>*)out_data)) {
LOG(ERROR) << "Failed call Run with paddle predictor";
return false;
}
return true;
}
virtual int create(const predictor::InferEngineCreationParams& params) = 0;
virtual int clone(void* origin_core) {
if (origin_core == NULL) {
LOG(ERROR) << "origin paddle Predictor is null.";
return -1;
}
paddle::PaddlePredictor* p_predictor =
(paddle::PaddlePredictor*)origin_core;
_core = p_predictor->Clone();
if (_core.get() == NULL) {
LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
return -1;
}
return 0;
}
virtual void* get() { return _core.get(); }
protected:
std::unique_ptr<paddle::PaddlePredictor> _core;
};
// infer interface
class FluidArmAnalysisCore : public FluidFamilyCore {
public:
int create(const predictor::InferEngineCreationParams& params) {
std::string data_path = params.get_path();
if (access(data_path.c_str(), F_OK) == -1) {
LOG(ERROR) << "create paddle predictor failed, path not exits: "
<< data_path;
return -1;
}
paddle::AnalysisConfig analysis_config;
analysis_config.SetParamsFile(data_path + "/__params__");
analysis_config.SetProgFile(data_path + "/__model__");
analysis_config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32, true);
analysis_config.SetCpuMathLibraryNumThreads(1);
if (params.enable_memory_optimization()) {
analysis_config.EnableMemoryOptim();
}
if (params.enable_lite()) {
analysis_config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32, true);
}
if (params.enable_xpu()) {
analysis_config.EnableXpu(100);
}
analysis_config.SwitchSpecifyInputNames(true);
AutoLock lock(GlobalPaddleCreateMutex::instance());
_core =
paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
if (NULL == _core.get()) {
LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
return -1;
}
VLOG(2) << "create paddle predictor sucess, path: " << data_path;
return 0;
}
};
class FluidArmNativeCore : public FluidFamilyCore {
public:
int create(const predictor::InferEngineCreationParams& params) {
std::string data_path = params.get_path();
if (access(data_path.c_str(), F_OK) == -1) {
LOG(ERROR) << "create paddle predictor failed, path not exits: "
<< data_path;
return -1;
}
paddle::NativeConfig native_config;
native_config.param_file = data_path + "/__params__";
native_config.prog_file = data_path + "/__model__";
native_config.use_gpu = false;
native_config.device = 0;
native_config.fraction_of_gpu_memory = 0;
AutoLock lock(GlobalPaddleCreateMutex::instance());
_core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
paddle::PaddleEngineKind::kNative>(
native_config);
if (NULL == _core.get()) {
LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
return -1;
}
VLOG(2) << "create paddle predictor sucess, path: " << data_path;
return 0;
}
};
class FluidArmAnalysisDirCore : public FluidFamilyCore {
public:
int create(const predictor::InferEngineCreationParams& params) {
std::string data_path = params.get_path();
if (access(data_path.c_str(), F_OK) == -1) {
LOG(ERROR) << "create paddle predictor failed, path not exits: "
<< data_path;
return -1;
}
paddle::AnalysisConfig analysis_config;
analysis_config.SetModel(data_path);
analysis_config.DisableGpu();
analysis_config.SwitchSpecifyInputNames(true);
analysis_config.SetCpuMathLibraryNumThreads(1);
if (params.enable_memory_optimization()) {
analysis_config.EnableMemoryOptim();
}
if (params.enable_ir_optimization()) {
analysis_config.SwitchIrOptim(true);
} else {
analysis_config.SwitchIrOptim(false);
}
AutoLock lock(GlobalPaddleCreateMutex::instance());
_core =
paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
if (NULL == _core.get()) {
LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
return -1;
}
VLOG(2) << "create paddle predictor sucess, path: " << data_path;
return 0;
}
};
class FluidArmNativeDirCore : public FluidFamilyCore {
public:
int create(const predictor::InferEngineCreationParams& params) {
std::string data_path = params.get_path();
if (access(data_path.c_str(), F_OK) == -1) {
LOG(ERROR) << "create paddle predictor failed, path not exits: "
<< data_path;
return -1;
}
paddle::NativeConfig native_config;
native_config.model_dir = data_path;
native_config.use_gpu = false;
native_config.device = 0;
native_config.fraction_of_arm_memory = 0;
AutoLock lock(GlobalPaddleCreateMutex::instance());
_core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
paddle::PaddleEngineKind::kNative>(
native_config);
if (NULL == _core.get()) {
LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
return -1;
}
VLOG(2) << "create paddle predictor sucess, path: " << data_path;
return 0;
}
};
class Parameter {
public:
Parameter() : _row(0), _col(0), _params(NULL) {}
~Parameter() {
VLOG(2) << "before destroy Parameter, file_name[" << _file_name << "]";
destroy();
}
int init(int row, int col, const char* file_name) {
destroy();
_file_name = file_name;
_row = row;
_col = col;
_params = reinterpret_cast<float*>(malloc(_row * _col * sizeof(float)));
if (_params == NULL) {
LOG(ERROR) << "Load " << _file_name << " malloc error.";
return -1;
}
VLOG(2) << "Load parameter file[" << _file_name << "] success.";
return 0;
}
void destroy() {
_row = 0;
_col = 0;
if (_params != NULL) {
free(_params);
_params = NULL;
}
}
int load() {
if (_params == NULL || _row <= 0 || _col <= 0) {
LOG(ERROR) << "load parameter error [not inited].";
return -1;
}
FILE* fs = fopen(_file_name.c_str(), "rb");
if (fs == NULL) {
LOG(ERROR) << "load " << _file_name << " fopen error.";
return -1;
}
static const uint32_t MODEL_FILE_HEAD_LEN = 16;
char head[MODEL_FILE_HEAD_LEN] = {0};
if (fread(head, 1, MODEL_FILE_HEAD_LEN, fs) != MODEL_FILE_HEAD_LEN) {
destroy();
LOG(ERROR) << "Load " << _file_name << " read head error.";
if (fs != NULL) {
fclose(fs);
fs = NULL;
}
return -1;
}
uint32_t matrix_size = _row * _col;
if (matrix_size == fread(_params, sizeof(float), matrix_size, fs)) {
if (fs != NULL) {
fclose(fs);
fs = NULL;
}
VLOG(2) << "load " << _file_name << " read ok.";
return 0;
} else {
LOG(ERROR) << "load " << _file_name << " read error.";
destroy();
if (fs != NULL) {
fclose(fs);
fs = NULL;
}
return -1;
}
return 0;
}
public:
std::string _file_name;
int _row;
int _col;
float* _params;
};
class SigmoidModel {
public:
~SigmoidModel() {}
int load(const char* sigmoid_w_file,
const char* sigmoid_b_file,
float exp_max,
float exp_min) {
AutoLock lock(GlobalSigmoidCreateMutex::instance());
if (0 != _sigmoid_w.init(2, 1, sigmoid_w_file) || 0 != _sigmoid_w.load()) {
LOG(ERROR) << "load params sigmoid_w failed.";
return -1;
}
VLOG(2) << "load sigmoid_w [" << _sigmoid_w._params[0] << "] ["
<< _sigmoid_w._params[1] << "].";
if (0 != _sigmoid_b.init(2, 1, sigmoid_b_file) || 0 != _sigmoid_b.load()) {
LOG(ERROR) << "load params sigmoid_b failed.";
return -1;
}
VLOG(2) << "load sigmoid_b [" << _sigmoid_b._params[0] << "] ["
<< _sigmoid_b._params[1] << "].";
_exp_max_input = exp_max;
_exp_min_input = exp_min;
return 0;
}
int softmax(float x, double& o) { // NOLINT
float _y0 = x * _sigmoid_w._params[0] + _sigmoid_b._params[0];
float _y1 = x * _sigmoid_w._params[1] + _sigmoid_b._params[1];
_y0 = (_y0 > _exp_max_input)
? _exp_max_input
: ((_y0 < _exp_min_input) ? _exp_min_input : _y0);
_y1 = (_y1 > _exp_max_input)
? _exp_max_input
: ((_y1 < _exp_min_input) ? _exp_min_input : _y1);
o = 1.0f / (1.0f + exp(_y0 - _y1));
return 0;
}
public:
Parameter _sigmoid_w;
Parameter _sigmoid_b;
float _exp_max_input;
float _exp_min_input;
};
class SigmoidFluidModel {
public:
int softmax(float x, double& o) { // NOLINT
return _sigmoid_core->softmax(x, o);
} // NOLINT
std::unique_ptr<SigmoidFluidModel> Clone() {
std::unique_ptr<SigmoidFluidModel> clone_model;
clone_model.reset(new SigmoidFluidModel());
clone_model->_sigmoid_core = _sigmoid_core;
clone_model->_fluid_core = _fluid_core->Clone();
return std::move(clone_model); // NOLINT
}
public:
std::unique_ptr<paddle::PaddlePredictor> _fluid_core;
std::shared_ptr<SigmoidModel> _sigmoid_core;
};
class FluidArmWithSigmoidCore : public FluidFamilyCore {
public:
virtual ~FluidArmWithSigmoidCore() {}
public:
int create(const predictor::InferEngineCreationParams& params) {
std::string model_path = params.get_path();
size_t pos = model_path.find_last_of("/\\");
std::string conf_path = model_path.substr(0, pos);
std::string conf_file = model_path.substr(pos);
configure::SigmoidConf conf;
if (configure::read_proto_conf(conf_path, conf_file, &conf) != 0) {
LOG(ERROR) << "failed load model path: " << model_path;
return -1;
}
_core.reset(new SigmoidFluidModel);
std::string fluid_model_data_path = conf.dnn_model_path();
predictor::InferEngineCreationParams new_params(params);
new_params.set_path(fluid_model_data_path);
int ret = load_fluid_model(new_params);
if (ret < 0) {
LOG(ERROR) << "fail to load fluid model.";
return -1;
}
const char* sigmoid_w_file = conf.sigmoid_w_file().c_str();
const char* sigmoid_b_file = conf.sigmoid_b_file().c_str();
float exp_max = conf.exp_max_input();
float exp_min = conf.exp_min_input();
_core->_sigmoid_core.reset(new SigmoidModel);
VLOG(2) << "create sigmoid core[" << _core->_sigmoid_core.get()
<< "], use count[" << _core->_sigmoid_core.use_count() << "].";
ret = _core->_sigmoid_core->load(
sigmoid_w_file, sigmoid_b_file, exp_max, exp_min);
if (ret < 0) {
LOG(ERROR) << "fail to load sigmoid model.";
return -1;
}
return 0;
}
virtual bool Run(const void* in_data, void* out_data) {
if (!_core->_fluid_core->Run(
*(std::vector<paddle::PaddleTensor>*)in_data,
(std::vector<paddle::PaddleTensor>*)out_data)) {
LOG(ERROR) << "Failed call Run with paddle predictor";
return false;
}
return true;
}
virtual int clone(SigmoidFluidModel* origin_core) {
if (origin_core == NULL) {
LOG(ERROR) << "origin paddle Predictor is null.";
return -1;
}
_core = origin_core->Clone();
if (_core.get() == NULL) {
LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
return -1;
}
VLOG(2) << "clone sigmoid core[" << _core->_sigmoid_core.get()
<< "] use count[" << _core->_sigmoid_core.use_count() << "].";
return 0;
}
virtual SigmoidFluidModel* get() { return _core.get(); }
virtual int load_fluid_model(
const predictor::InferEngineCreationParams& params) = 0;
int softmax(float x, double& o) { // NOLINT
return _core->_sigmoid_core->softmax(x, o);
}
protected:
std::unique_ptr<SigmoidFluidModel> _core; // NOLINT
};
class FluidArmNativeDirWithSigmoidCore : public FluidArmWithSigmoidCore {
public:
int load_fluid_model(const predictor::InferEngineCreationParams& params) {
std::string data_path = params.get_path();
if (access(data_path.c_str(), F_OK) == -1) {
LOG(ERROR) << "create paddle predictor failed, path not exits: "
<< data_path;
return -1;
}
paddle::NativeConfig native_config;
native_config.model_dir = data_path;
native_config.use_gpu = false;
native_config.device = 0;
native_config.fraction_of_arm_memory = 0;
AutoLock lock(GlobalPaddleCreateMutex::instance());
_core->_fluid_core =
paddle::CreatePaddlePredictor<paddle::NativeConfig,
paddle::PaddleEngineKind::kNative>(
native_config);
if (NULL == _core.get()) {
LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
return -1;
}
VLOG(2) << "create paddle predictor sucess, path: " << data_path;
return 0;
}
};
class FluidArmAnalysisDirWithSigmoidCore : public FluidArmWithSigmoidCore {
public:
int load_fluid_model(const predictor::InferEngineCreationParams& params) {
std::string data_path = params.get_path();
if (access(data_path.c_str(), F_OK) == -1) {
LOG(ERROR) << "create paddle predictor failed, path not exits: "
<< data_path;
return -1;
}
paddle::AnalysisConfig analysis_config;
analysis_config.SetModel(data_path);
analysis_config.DisableGpu();
analysis_config.SwitchSpecifyInputNames(true);
analysis_config.SetCpuMathLibraryNumThreads(1);
if (params.enable_memory_optimization()) {
analysis_config.EnableMemoryOptim();
}
AutoLock lock(GlobalPaddleCreateMutex::instance());
_core->_fluid_core =
paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
if (NULL == _core.get()) {
LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
return -1;
}
VLOG(2) << "create paddle predictor sucess, path: " << data_path;
return 0;
}
};
} // namespace fluid_arm
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle_inference/inferencer-fluid-arm/include/fluid_arm_engine.h"
#include "core/predictor/framework/factory.h"
namespace baidu {
namespace paddle_serving {
namespace fluid_arm {
REGIST_FACTORY_OBJECT_IMPL_WITH_NAME(
::baidu::paddle_serving::predictor::FluidInferEngine<FluidCpuAnalysisCore>,
::baidu::paddle_serving::predictor::InferEngine,
"FLUID_ARM_ANALYSIS");
REGIST_FACTORY_OBJECT_IMPL_WITH_NAME(
::baidu::paddle_serving::predictor::FluidInferEngine<
FluidCpuAnalysisDirCore>,
::baidu::paddle_serving::predictor::InferEngine,
"FLUID_ARM_ANALYSIS_DIR");
REGIST_FACTORY_OBJECT_IMPL_WITH_NAME(
::baidu::paddle_serving::predictor::FluidInferEngine<
FluidCpuAnalysisDirWithSigmoidCore>,
::baidu::paddle_serving::predictor::InferEngine,
"FLUID_ARM_ANALYSIS_DIR_SIGMOID");
REGIST_FACTORY_OBJECT_IMPL_WITH_NAME(
::baidu::paddle_serving::predictor::FluidInferEngine<FluidCpuNativeCore>,
::baidu::paddle_serving::predictor::InferEngine,
"FLUID_ARM_NATIVE");
REGIST_FACTORY_OBJECT_IMPL_WITH_NAME(
::baidu::paddle_serving::predictor::FluidInferEngine<FluidCpuNativeDirCore>,
::baidu::paddle_serving::predictor::InferEngine,
"FLUID_ARM_NATIVE_DIR");
REGIST_FACTORY_OBJECT_IMPL_WITH_NAME(
::baidu::paddle_serving::predictor::FluidInferEngine<
FluidCpuNativeDirWithSigmoidCore>,
::baidu::paddle_serving::predictor::InferEngine,
"FLUID_ARM_NATIVE_DIR_SIGMOID");
} // namespace fluid_arm
} // namespace paddle_serving
} // namespace baidu
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册