operator.py 81.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18
import threading
import multiprocessing
H
HexToString 已提交
19
from paddle_serving_client import Client
20 21 22
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
29
from io import BytesIO
B
barrierye 已提交
30 31 32 33 34 35
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
36

37 38 39
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify
check_feed_dict=ParamVerify.check_feed_dict
check_fetch_list=ParamVerify.check_fetch_list
B
barrierye 已提交
40
from .proto import pipeline_service_pb2
41 42 43 44
from .channel import (ThreadChannel, ProcessChannel,ChannelData, 
                      ChannelDataType, ChannelStopError, ChannelTimeoutError)
from .error_catch import  ProductErrCode
from .error_catch import CustomExceptionCode as ChannelDataErrcode
B
barrierye 已提交
45
from .util import NameGenerator
B
barriery 已提交
46
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
47
from . import local_service_handler
48
from .pipeline_client import PipelineClient as PPClient
49

50
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
51 52
_op_name_gen = NameGenerator("Op")

53 54 55 56 57 58 59 60 61 62 63 64 65 66
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = {
    0: "int64",  # VarType.INT64
    1: "float32",  # VarType.FP32
    2: "int32",  # VarType.INT32
    3: "float64",  # VarType.FP64
    4: "int16",  # VarType.int16
    5: "float16",  # VarType.FP32
    6: "uint16",  # VarType.BF16
    7: "uint8",  # VarType.UINT8
    8: "int8",  # VarType.INT8
    9: "bool",  # VarType.BOOL
    10: "complex64",  # VarType.COMPLEX64
    11: "complex128",  # VarType.COMPLEX128
67 68
    12: "string",  # load by numpy
    13: "bytes",  # load by numpy
69 70
}

D
dongdaxiang 已提交
71 72 73

class Op(object):
    def __init__(self,
B
barrierye 已提交
74
                 name=None,
D
dongdaxiang 已提交
75
                 input_ops=[],
B
barriery 已提交
76 77
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
78
                 client_config=None,
W
wangjiawei04 已提交
79
                 client_type=None,
B
barriery 已提交
80 81
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
82
                 retry=0,
B
barriery 已提交
83
                 batch_size=None,
84
                 auto_batching_timeout=None,
85 86
                 local_service_handler=None,
                 jump_to_ops=[]):
B
barriery 已提交
87
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
88
        if name is None:
B
barrierye 已提交
89
            name = _op_name_gen.next()
90
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
91
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
92
        self.set_input_ops(input_ops)
93
        self.set_jump_to_ops(jump_to_ops)
B
barrierye 已提交
94

W
wangjiawei04 已提交
95
        self._local_service_handler = local_service_handler
B
barriery 已提交
96
        self._server_endpoints = server_endpoints
B
barrierye 已提交
97
        self._fetch_names = fetch_list
B
barriery 已提交
98
        self._client_config = client_config
W
wangjiawei04 已提交
99
        self.client_type = client_type
B
barriery 已提交
100
        self._timeout = timeout
101
        self._retry = max(1, retry)
B
barriery 已提交
102 103 104
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

105 106
        self._input = None
        self._outputs = []
B
barrierye 已提交
107

B
barriery 已提交
108 109 110
        self._server_use_profile = False
        self._tracer = None

111 112 113
        # for grpc_pipeline predict mode. False, string key/val; True, tensor format.
        self._pack_tensor_format = False

B
barriery 已提交
114 115 116 117 118
        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False
F
felixhjh 已提交
119 120 121 122
        self.dynamic_shape_info = {} 
        self.set_dynamic_shape_info()
    
    def set_dynamic_shape_info(self):
F
felixhjh 已提交
123 124 125 126 127
        """
        when opening tensorrt(configure in config.yml) and each time the input shape
        for inferring is different, using this method for configuring tensorrt
        dynamic shape to infer in each op model
        """
F
felixhjh 已提交
128
        pass
B
barriery 已提交
129

130 131 132 133 134 135 136 137 138 139 140 141 142
    # for feed/fetch dict cehck
    @staticmethod
    def get_feed_fetch_list(client):
        from paddle_serving_app.local_predict import LocalPredictor
        if isinstance(client, Client):
            feed_names = client.get_feed_names()
            fetch_names = client.get_fetch_names()
        if isinstance(client, LocalPredictor):
            feed_names = client.feed_names_
            fetch_names = client.fetch_names_
        return feed_names, fetch_names
              

B
barriery 已提交
143
    def init_from_dict(self, conf):
144 145 146 147 148 149 150 151 152 153 154
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
        """
B
barriery 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")
        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
175
            _LOGGER.debug(
B
barriery 已提交
176 177 178 179 180 181 182
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

183 184 185
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
186
        self.device_type = -1
187 188 189
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
190
        self.precision = "fp32"
T
TeslaZhao 已提交
191 192 193 194
        self.use_mkldnn = False
        self.mkldnn_cache_capacity = 0
        self.mkldnn_op_list = None
        self.mkldnn_bf16_op_list = None
F
felixhjh 已提交
195
        self.min_subgraph_size = 3
196
        self.use_calib = False
T
TeslaZhao 已提交
197

B
barriery 已提交
198 199 200 201 202 203
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
204
                self.client_type = conf["client_type"]
205
            else:
W
wangjiawei04 已提交
206
                if self._local_service_handler is None:
B
barriery 已提交
207
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
208 209
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
210
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
211
                    self.client_type = local_service_conf.get("client_type")
212 213
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
214
                    self.device_type = local_service_conf.get("device_type")
215 216 217 218
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
219
                    self.precision = local_service_conf.get("precision")
220
                    self.use_calib = local_service_conf.get("use_calib")
T
TeslaZhao 已提交
221 222 223 224 225 226 227
                    self.use_mkldnn = local_service_conf.get("use_mkldnn")
                    self.mkldnn_cache_capacity = local_service_conf.get(
                        "mkldnn_cache_capacity")
                    self.mkldnn_op_list = local_service_conf.get(
                        "mkldnn_op_list")
                    self.mkldnn_bf16_op_list = local_service_conf.get(
                        "mkldnn_bf16_op_list")
F
felixhjh 已提交
228 229
                    self.min_subgraph_size = local_service_conf.get(
                        "min_subgraph_size")
T
TeslaZhao 已提交
230

231
                    if self.model_config is None:
B
barriery 已提交
232 233 234 235
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
236 237
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
238
                                model_config=self.model_config,
W
wangjiawei04 已提交
239
                                client_type=self.client_type,
240 241
                                workdir=self.workdir,
                                thread_num=self.thread_num,
242
                                device_type=self.device_type,
243 244
                                devices=self.devices,
                                mem_optim=self.mem_optim,
245
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
246 247 248 249 250
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_bf16_op_list,
F
felixhjh 已提交
251 252
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
253 254
                                dynamic_shape_info=self.dynamic_shape_info,
                                use_calib=self.use_calib)
W
wangjiawei04 已提交
255 256 257 258 259 260 261 262 263 264 265 266
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
267
                            service_handler = local_service_handler.LocalServiceHandler(
268
                                model_config=self.model_config,
W
wangjiawei04 已提交
269
                                client_type=self.client_type,
270 271
                                workdir=self.workdir,
                                thread_num=self.thread_num,
272
                                device_type=self.device_type,
273
                                devices=self.devices,
274 275
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
276
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
277 278 279 280 281
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_op_list,
F
felixhjh 已提交
282 283
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
284 285
                                dynamic_shape_info=self.dynamic_shape_info,
                                use_calib=self.use_calib)
W
wangjiawei04 已提交
286 287 288 289
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
290
                else:
B
barriery 已提交
291
                    self.with_serving = True
W
wangjiawei04 已提交
292
                    self._local_service_handler.prepare_server(
B
barriery 已提交
293
                    )  # get fetch_list
W
wangjiawei04 已提交
294
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
295 296 297
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
298
                    if self._client_config is None:
W
wangjiawei04 已提交
299
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
300
                        )
B
barriery 已提交
301
                    if self._fetch_names is None:
W
wangjiawei04 已提交
302
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
303
                        )
B
barriery 已提交
304 305
        else:
            self.with_serving = True
B
barriery 已提交
306

307 308 309 310 311 312 313 314 315 316 317
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
318
                              ", ".join([op.name for op in self._input_ops
319 320 321 322
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
323

324
    def launch_local_rpc_service(self):
325 326 327 328 329 330 331 332 333
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
334
        if self._local_service_handler is None:
B
barriery 已提交
335 336
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
337
                          " service: local_service_handler is None."))
B
barriery 已提交
338
            return
W
wangjiawei04 已提交
339
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
340 341 342
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
343
        self._local_service_handler.start_server()
B
barriery 已提交
344
        _LOGGER.info("Op({}) use local rpc service at port: {}"
345 346
                     .format(self.name, port))

B
barriery 已提交
347
    def use_default_auto_batching_config(self):
348 349 350 351 352 353 354 355 356
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
357
        if self._batch_size != 1:
358 359
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
360 361
            self._batch_size = 1
        if self._auto_batching_timeout != None:
362
            _LOGGER.warning(
B
barriery 已提交
363 364
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
365
            self._auto_batching_timeout = None
B
barriery 已提交
366

B
barrierye 已提交
367
    def use_profiler(self, use_profile):
B
barrierye 已提交
368
        self._server_use_profile = use_profile
369

B
barriery 已提交
370 371 372
    def set_tracer(self, tracer):
        self._tracer = tracer

W
wangjiawei04 已提交
373
    def init_client(self, client_config, server_endpoints):
374 375 376 377 378 379 380 381 382 383 384 385
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
386
        if self.with_serving == False:
B
barriery 已提交
387
            _LOGGER.info("Op({}) has no client (and it also do not "
388
                         "run the process function)".format(self.name))
B
barrierye 已提交
389
            return None
W
wangjiawei04 已提交
390
        if self.client_type == 'brpc':
B
barrierye 已提交
391 392
            client = Client()
            client.load_client_config(client_config)
393
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) 
394 395
        elif self.client_type == 'pipeline_grpc':
            client = PPClient()
W
wangjiawei04 已提交
396 397 398 399
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
400
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client)
401
        else:
B
barriery 已提交
402
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
403
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
404 405 406
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
407 408
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
409
        _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names))
B
barrierye 已提交
410
        return client
411 412 413 414 415

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
416 417 418 419 420 421 422 423 424 425
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
426 427 428 429 430
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
431
                _LOGGER.critical(
B
barriery 已提交
432 433
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
434
                os._exit(-1)
435
            self._input_ops.append(op)
D
dongdaxiang 已提交
436

437 438 439
    def set_pack_tensor_format(self, is_tensor_format=False):
        self._pack_tensor_format = is_tensor_format

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    def get_jump_to_ops(self):
        return self._jump_to_ops

    def set_jump_to_ops(self, ops):
        """
        Set jump to ops, then, this op can send channeldata to output channel.

        Args:
            ops: op list to be jumpped

        Returns:
            None.
        """
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]

        self._jump_to_ops = []
        for op in ops:
            if not isinstance(op, Op):
                _LOGGER.critical(
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
                os._exit(-1)
            self._jump_to_ops.append(op)

    def is_jump_op(self):
        """
        The op has _jump_to_ops members or not.

        Args:
            None

        Returns:
            True or False
        """
        return len(self._jump_to_ops) > 0

    def check_jumping(self, input_data):
        """
        Check whether to send data to jump ops.WhileOp needs to rewrite 
        this interface. this function returns False default.
     
        Args:
            input_data: input data to be preprocessed

        Returns:
            True, send data to the output channel of jump ops
            False, send data to output channel.
        """
        return False

    def get_output_channels_of_jump_ops(self):
        """
        Get output channels of jump ops

        Args:
            None

        Returns:
            list of channels
        """
        channels = []
        if self.is_jump_op() is False:
            return channels
        for op in self._jump_to_ops:
            _LOGGER.info("op:{} extend op._get_output_channels:{}".format(
                op.name, op._get_output_channels()))
            channels.extend(op._get_output_channels())

        _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format(
            channels))
        return channels

513
    def add_input_channel(self, channel):
514 515 516 517
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
518
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
519
            _LOGGER.critical(
B
barriery 已提交
520 521 522
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
523
            os._exit(-1)
524 525
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
526

527
    def clean_input_channel(self):
B
barrierye 已提交
528 529 530 531
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
532

533
    def add_output_channel(self, channel):
534 535 536 537 538 539 540 541 542 543
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
544
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
545
            _LOGGER.critical(
B
barriery 已提交
546 547
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
548
            os._exit(-1)
549 550
        channel.add_producer(self.name)
        self._outputs.append(channel)
551
        _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel))
D
dongdaxiang 已提交
552

553
    def clean_output_channels(self):
B
barrierye 已提交
554 555 556 557 558
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

559
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
560 561 562 563 564 565
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
566
            data_id: inner unique id, increase auto
567
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
568 569

        Return:
T
TeslaZhao 已提交
570
            output_data: data for process stage
T
TeslaZhao 已提交
571 572 573 574 575
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
576
        # multiple previous Op
B
barrierye 已提交
577
        if len(input_dicts) != 1:
578 579
            _LOGGER.critical(
                self._log(
B
barriery 已提交
580 581
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
582
            os._exit(-1)
D
dongdaxiang 已提交
583

B
barrierye 已提交
584
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
585
        return input_dict, False, None, ""
586
    
587
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
588 589 590 591 592
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
593 594
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
595 596 597 598

        Returns:
            call_result: predict result
        """
599 600 601 602

        call_result = None
        err_code = ChannelDataErrcode.OK.value
        err_info = ""
603 604 605 606 607 608 609 610 611 612 613 614 615
        @ErrorCatch 
        @ParamChecker
        def feed_fetch_list_check_helper(feed_batch : lambda feed_batch: check_feed_dict(feed_batch[0], self.right_feed_names),
                                         fetch_list : lambda fetch_list: check_fetch_list(fetch_list, self.right_fetch_names),
                                         log_id):
            return None
        _, resp = feed_fetch_list_check_helper(feed_batch, self._fetch_names, log_id=typical_logid)
        if resp.err_no != CustomExceptionCode.OK.value:
            err_code = resp.err_no
            err_info = resp.err_msg
            call_result = None
            return call_result, err_code, err_info
                
W
wangjiawei04 已提交
616
        if self.client_type == "local_predictor":
617 618 619 620 621 622 623 624
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for local_predictor mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"

W
wangjiawei04 已提交
625 626
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
627
                fetch=self._fetch_names,
W
wangjiawei04 已提交
628 629
                batch=True,
                log_id=typical_logid)
630 631 632 633 634 635 636 637

        elif self.client_type == "brpc":
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for brpc mode.".format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"
W
wangjiawei04 已提交
638
            call_result = self.client.predict(
639
                feed=feed_batch[0],
W
wangjiawei04 已提交
640
                fetch=self._fetch_names,
W
wangjiawei04 已提交
641 642
                batch=True,
                log_id=typical_logid)
643 644 645 646 647 648 649 650 651 652 653 654 655 656

        elif self.client_type == "pipeline_grpc":
            err, err_info = ChannelData.check_dictdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                       npdata in process for pipeline_grpc mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict"

            call_result = self.client.predict(
                feed_dict=feed_batch[0],
                fetch=self._fetch_names,
                asyn=False,
657
                pack_tensor_format=self._pack_tensor_format,
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
                profile=False)
            if call_result is None:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. call_result is None."))
                return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error"
            if call_result.err_no != 0:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}".
                              format(call_result.err_no, call_result.err_msg)))
                return call_result, ChannelDataErrcode(
                    call_result.err_no).value, call_result.err_msg

            new_dict = {}
            err_code = ChannelDataErrcode(call_result.err_no).value
            err_info = call_result.err_msg
            for idx, key in enumerate(call_result.key):
                new_dict[key] = [call_result.value[idx]]
            call_result = new_dict

        return call_result, err_code, err_info
678

679
    def postprocess(self, input_data, fetch_data, data_id=0, log_id=0):
T
TeslaZhao 已提交
680 681 682
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
683 684
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
685
            data_id: inner unique id, increase auto
686
            log_id: logid, 0 default
T
TeslaZhao 已提交
687 688

        Returns: 
T
TeslaZhao 已提交
689
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
690 691 692 693
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
694 695 696
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
697
        return fetch_dict, None, ""
D
dongdaxiang 已提交
698

B
barrierye 已提交
699
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
713
        data_id, error_channeldata = None, None
B
barrierye 已提交
714
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
715 716 717 718
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
719
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
720
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
721 722

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
723
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
724 725 726
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
727
            if client_need_profile:
B
barrierye 已提交
728
                profile_set |= data.profile_data_set
B
barrierye 已提交
729
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
730
                profile_set, log_id)
B
barrierye 已提交
731 732 733 734 735

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
736
                                 profile_str=None,
B
barrierye 已提交
737
                                 client_need_profile=False,
B
barrierye 已提交
738
                                 profile_set=None):
T
TeslaZhao 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
753 754
        if name is None:
            name = self.name
B
barrierye 已提交
755

B
barriery 已提交
756
        # add profile into channeldata
B
barrierye 已提交
757
        if client_need_profile and profile_set is not None:
B
barriery 已提交
758 759
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
760
            data.add_profile(profile_set)
B
barrierye 已提交
761

B
barriery 已提交
762 763 764
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
765
    def start_with_process(self):
766 767 768 769 770 771 772 773 774 775
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
776 777 778
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
779
        process = []
B
barrierye 已提交
780
        for concurrency_idx in range(self.concurrency):
781 782
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
783
                args=(concurrency_idx, self._get_input_channel(),
784 785
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
786
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
787 788
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
789
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
F
felixhjh 已提交
790
                      self.get_output_channels_of_jump_ops(),
791 792
                      self.min_subgraph_size, self.dynamic_shape_info, 
                      self.use_calib))
B
barriery 已提交
793
            p.daemon = True
794
            p.start()
W
wangjiawei04 已提交
795 796
            process.append(p)
        return process
797

W
wangjiawei04 已提交
798
    def start_with_thread(self):
799 800 801 802 803 804 805 806 807 808
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
809 810 811
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
812 813 814 815

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
816
            self.local_predictor = self._local_service_handler.get_client(0)
817

818
        threads = []
B
barrierye 已提交
819
        for concurrency_idx in range(self.concurrency):
820 821
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
822
                args=(concurrency_idx, self._get_input_channel(),
823 824
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
825
                      self.device_type, self.devices, self.mem_optim,
826 827 828
                      self.ir_optim, self.precision, self.use_mkldnn, 
                      self.mkldnn_cache_capacity, self.mkldnn_op_list, 
                      self.mkldnn_bf16_op_list, self.is_jump_op(), 
F
felixhjh 已提交
829
                      self.get_output_channels_of_jump_ops(),
830 831
                      self.min_subgraph_size, self.dynamic_shape_info,
                      self.use_calib))
B
barriery 已提交
832 833 834
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
835 836 837 838
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
839
    def init_op(self):
B
barrierye 已提交
840 841
        pass

T
TeslaZhao 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
856
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
857 858
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
859
        skip_process_dict = {}
860 861 862 863 864 865
        @ErrorCatch
        def preprocess_help(self, parsed_data, data_id, logid_dict):
            preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                parsed_data, data_id, logid_dict.get(data_id))
            return preped_data, is_skip_process, prod_errcode, prod_errinfo
            
866 867
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
868 869 870
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
F
felixhjh 已提交
871 872
            process_res, resp = preprocess_help(self, parsed_data, data_id = data_id,
            logid_dict = logid_dict)
F
felixhjh 已提交
873
            if resp.err_no == CustomExceptionCode.OK.value:
874
                preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res
T
TeslaZhao 已提交
875 876
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
877 878 879 880 881 882 883 884 885 886 887
                if prod_errcode is not None:
                    _LOGGER.error("data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".format(data_id, prod_errcode, prod_errinfo))
                    error_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
                
T
TeslaZhao 已提交
888
                error_channeldata = ChannelData(
889 890 891 892 893
                  error_code=resp.err_no,
                  error_info=resp.err_msg,
                  data_id=data_id,
                  log_id=log_id)
                skip_process_dict[data_id] = True 
T
TeslaZhao 已提交
894

895 896 897 898
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
899
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
916
        _LOGGER.debug("{} Running process".format(op_info_prefix))
917 918
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
919
        is_skip_process = False
T
TeslaZhao 已提交
920
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
921 922

        # skip process stage
T
TeslaZhao 已提交
923 924
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
960 961
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
1007

T
TeslaZhao 已提交
1008 1009
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
1010
        error_info = ""
T
TeslaZhao 已提交
1011 1012 1013 1014
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
1015 1016
                    midped_batch, error_code, error_info = self.process(
                        feed_batch, typical_logid)
T
TeslaZhao 已提交
1017 1018 1019
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
1020 1021 1022 1023
                        predict_res, error_code, error_info = self.process(
                            [feed_batch[idx]], typical_logid)
                        if error_code != ChannelDataErrcode.OK.value:
                            break
T
TeslaZhao 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
1036
                        midped_batch, error_code, error_info = func_timeout.func_timeout(
B
barriery 已提交
1037 1038 1039
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
1040
                    else:
T
TeslaZhao 已提交
1041 1042
                        midped_batch = []
                        for idx in range(len(feed_batch)):
1043
                            predict_res, error_code, error_info = func_timeout.func_timeout(
T
TeslaZhao 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
1055
                    else:
T
TeslaZhao 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
1072 1073 1074
            error_info = "[{}] failed to predict. {}. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format(
             self.name, error_info)
    
T
TeslaZhao 已提交
1075 1076 1077
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
1078
                    error_code=error_code,
T
TeslaZhao 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
1123
        else:
T
TeslaZhao 已提交
1124 1125 1126 1127 1128
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
1129 1130
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
1131
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
1146
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
1147 1148
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
1149 1150 1151 1152 1153
        @ErrorCatch
        def postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict):
            postped_data, prod_errcode, prod_errinfo = self.postprocess(parsed_data_dict[data_id], 
              midped_data, data_id, logid_dict.get(data_id))
            if not isinstance(postped_data, dict):
F
felixhjh 已提交
1154
                raise CustomException(CustomExceptionCode.TYPE_ERROR, "postprocess should return dict", True)
1155 1156
            return postped_data, prod_errcode, prod_errinfo

B
bug fix  
barriery 已提交
1157
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
1158
            log_id = logid_dict.get(data_id)
1159
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
1160 1161
            prod_errcode, prod_errinfo = None, None

F
felixhjh 已提交
1162 1163
            post_res, resp = postprocess_help(self, parsed_data_dict, midped_data, data_id
            = data_id, logid_dict = logid_dict)
H
huangjianhui 已提交
1164
            if resp.err_no == CustomExceptionCode.OK.value:
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
                postped_data, prod_errcode, prod_errinfo = post_res
                if prod_errcode is not None:
                  # product errors occured
                    err_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
T
TeslaZhao 已提交
1176
                err_channeldata = ChannelData(
1177 1178
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
T
TeslaZhao 已提交
1179 1180 1181
                    data_id=data_id,
                    log_id=log_id)

1182 1183 1184 1185
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
            output_data = None
            err, _ = ChannelData.check_npdata(postped_data)
            if err == 0:
                output_data = ChannelData(
                  ChannelDataType.CHANNEL_NPDATA.value,
                  npdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            else:
                output_data = ChannelData(
                  ChannelDataType.DICT.value,
                  dictdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            postped_data_dict[data_id] = output_data
B
barriery 已提交
1201
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
1202
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
1203 1204

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
1205
                                 timeout, op_info_prefix):
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
1231
                        front_start_time = int(round(_time() * 1000000))
B
barriery 已提交
1232 1233 1234
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1235 1236
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1237
                                break
B
barriery 已提交
1238 1239
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1240 1241 1242
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1243
                        _LOGGER.debug(
1244 1245
                            "_auto_batching_generator get {} channeldata from op:{} input channel. time={}".
                            format(idx, op_name, front_start_time))
B
barriery 已提交
1246
                    except ChannelTimeoutError:
B
barriery 已提交
1247 1248
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1249
                        break
B
barriery 已提交
1250 1251
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1252
            yield batch
1253

1254
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1267
        parsed_data_dict = collections.OrderedDict()
1268 1269
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1270
        logid_dict = {}
B
bug fix  
barriery 已提交
1271
        for channeldata_dict in batch:
1272
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1273
                    client_need_profile, profile_set, log_id) = \
1274 1275 1276 1277 1278
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1279
                logid_dict[data_id] = log_id
1280 1281 1282
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1283 1284
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1285

T
TeslaZhao 已提交
1286
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1287

W
wangjiawei04 已提交
1288
    def _run(self, concurrency_idx, input_channel, output_channels,
1289
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
1290 1291 1292 1293
             device_type, devices, mem_optim, ir_optim, precision,
             use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list, 
             mkldnn_bf16_op_list, is_jump_op, output_channels_of_jump_ops, 
             min_subgraph_size, dynamic_shape_info, use_calib):
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1311
            device_type: support multiple devices
1312 1313
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
1314
            ir_optim: use calculation chart optimization, False default.
T
TeslaZhao 已提交
1315 1316 1317 1318 1319
            precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
            use_mkldnn: use mkldnn, default False.
            mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
            mkldnn_op_list: OP list optimized by mkldnn, None default.
            mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
1320 1321
            is_jump_op: OP has jump op list or not, False default.
            output_channels_of_jump_ops: all output channels of jump ops.
1322
            use_calib: use calib mode of paddle inference, False default.
1323 1324 1325 1326

        Returns:
            None
        """
1327
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1328

1329
        # init ops
B
barriery 已提交
1330
        profiler = None
B
barrierye 已提交
1331
        try:
1332 1333 1334 1335 1336 1337
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1338
                    device_type=device_type,
1339 1340
                    devices=devices,
                    mem_optim=mem_optim,
1341
                    ir_optim=ir_optim,
T
TeslaZhao 已提交
1342 1343 1344 1345
                    precision=precision,
                    use_mkldnn=use_mkldnn,
                    mkldnn_cache_capacity=mkldnn_cache_capacity,
                    mkldnn_op_list=mkldnn_op_list,
F
felixhjh 已提交
1346 1347
                    mkldnn_bf16_op_list=mkldnn_bf16_op_list,
                    min_subgraph_size=min_subgraph_size,
1348 1349
                    dynamic_shape_info=dynamic_shape_info,
                    use_calib=use_calib)
1350 1351 1352

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1353 1354
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1355
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1356
            profiler = self._initialize(is_thread_op, concurrency_idx)
1357

B
barrierye 已提交
1358
        except Exception as e:
B
barriery 已提交
1359
            _LOGGER.critical(
T
TeslaZhao 已提交
1360
                "{} failed to init op: {}".format(op_info_prefix, e),
B
barriery 已提交
1361
                exc_info=True)
B
barrierye 已提交
1362
            os._exit(-1)
B
barriery 已提交
1363
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1364

B
barriery 已提交
1365
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1366 1367 1368 1369
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1370
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1371

B
barriery 已提交
1372
        start, end = None, None
B
barrierye 已提交
1373
        trace_que = collections.deque()
B
barrierye 已提交
1374
        while True:
B
barriery 已提交
1375
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1376
            try:
B
barriery 已提交
1377
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1378
            except ChannelStopError:
B
barriery 已提交
1379
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1380
                self._finalize(is_thread_op)
B
barrierye 已提交
1381
                break
B
barriery 已提交
1382
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1383
            in_time = end - start
1384 1385
            _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix,
                                                        time.time()))
1386

B
barriery 已提交
1387 1388
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1389
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1390 1391
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1392
            except ChannelStopError:
B
barriery 已提交
1393
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1394
                self._finalize(is_thread_op)
B
barriery 已提交
1395
                break
1396 1397 1398
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1399 1400
            _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix,
                                                      time.time()))
1401

1402 1403 1404 1405 1406 1407
            front_cost = int(round(_time() * 1000000)) - start
            for data_id, parsed_data in parsed_data_dict.items():
                _LOGGER.debug(
                    "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format(
                        data_id, self.name, front_cost / 1000.0))

1408
            # preprecess
B
barriery 已提交
1409
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1410 1411
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1412
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1413
            prep_time = end - start
1414 1415
            _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), prep_time))
1416
            try:
T
TeslaZhao 已提交
1417
                # put error requests into output channel, skip process and postprocess stage
1418
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1419
                    self._push_to_output_channels(
B
barriery 已提交
1420 1421
                        data=err_channeldata,
                        channels=output_channels,
1422 1423 1424
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1425
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1426 1427
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1428
            if len(preped_data_dict) == 0:
1429 1430
                continue

B
barrierye 已提交
1431
            # process
B
barriery 已提交
1432
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1433
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1434
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1435
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1436
            midp_time = end - start
1437 1438
            _LOGGER.debug("op:{} process_end:{}, cost:{}".format(
                op_info_prefix, time.time(), midp_time))
1439 1440
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1441
                    self._push_to_output_channels(
B
barriery 已提交
1442 1443
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1444 1445
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1446
            except ChannelStopError:
B
barriery 已提交
1447
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1448 1449 1450
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1451
                continue
1452 1453

            # postprocess
B
barriery 已提交
1454
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1455
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1456
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1457
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1458
            postp_time = end - start
1459
            after_postp_time = _time()
1460 1461
            _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), postp_time))
1462 1463
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1464
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1465
                        data=err_channeldata,
B
barriery 已提交
1466
                        channels=output_channels,
B
barriery 已提交
1467 1468
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1469
            except ChannelStopError:
B
barriery 已提交
1470
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1471 1472 1473
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1474
                continue
1475

1476
            # push data to channel (if run succ)
B
barriery 已提交
1477
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1478
            try:
B
barriery 已提交
1479
                profile_str = profiler.gen_profile_str()
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
                if self.is_jump_op() is True and self.check_jumping(
                        postped_data_dict) is True:
                    # push data to output channel of ops to be jumped 
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels_of_jump_ops,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
                else:
                    # push data to output channel.
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
B
barrierye 已提交
1515
            except ChannelStopError:
B
barriery 已提交
1516
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1517
                self._finalize(is_thread_op)
B
barrierye 已提交
1518
                break
B
barriery 已提交
1519
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1520
            out_time = end - start
1521
            after_outchannel_time = int(round(_time() * 1000000))
B
barriery 已提交
1522
            if trace_buffer is not None:
B
barrierye 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1540

W
wangjiawei04 已提交
1541
    def _initialize(self, is_thread_op, concurrency_idx):
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
1555 1556 1557 1558 1559 1560 1561 1562 1563
        @ErrorCatch
        def init_helper(self, is_thread_op, concurrency_idx):
            if is_thread_op:
                with self._for_init_op_lock:
                    if not self._succ_init_op:
                        # for the threaded version of Op, each thread cannot get its concurrency_idx
                        self.concurrency_idx = None
                        # init client
                        self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1564
                                                   self._server_endpoints)
1565 1566 1567 1568 1569 1570 1571 1572
                        # user defined
                        self.init_op()
                        self._succ_init_op = True
                        self._succ_close_op = False
            else:
                self.concurrency_idx = concurrency_idx
                # init client
                self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1573
                                           self._server_endpoints)
1574 1575 1576 1577
                # user defined
                self.init_op() 
        
        init_helper(self, is_thread_op, concurrency_idx)
F
felixhjh 已提交
1578
        print("[OP Object] init success")
B
barriery 已提交
1579 1580 1581 1582 1583
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1584 1585 1586 1587 1588 1589 1590 1591
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1592 1593 1594 1595 1596

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1597
class RequestOp(Op):
1598 1599 1600 1601 1602 1603
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1604

B
barrierye 已提交
1605
    def __init__(self):
1606 1607 1608
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1609 1610
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1611
        # init op
1612
        try:
1613
            self.init_op()
1614
        except Exception as e:
B
barriery 已提交
1615
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1616
            os._exit(-1)
B
barrierye 已提交
1617

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    def proto_tensor_2_numpy(self, tensor):
        """
        Convert proto tensor to numpy array, The supported types are as follows:
                INT64
                FP32
		INT32
		FP64
		INT16
		FP16
		BF16
		UINT8
		INT8
		BOOL
1631
                BYTES
1632
        Unsupported type:
1633
                STRING
1634 1635 1636 1637 1638 1639 1640
                COMPLEX64
                COMPLEX128

        Args:
            tensor: one tensor in request.tensors.

        Returns:
T
TeslaZhao 已提交
1641 1642
            np_data: np.ndnumpy, the tensor data is converted to numpy.
            lod_info: np.ndnumpy, lod info of the tensor data, None default.
1643 1644 1645 1646 1647 1648
        """
        if tensor is None or tensor.elem_type is None or tensor.name is None:
            _LOGGER.error("input params of tensor is wrong. tensor: {}".format(
                tensor))
            return None

T
TeslaZhao 已提交
1649
        # Set dim shape
1650 1651 1652 1653 1654 1655 1656
        dims = []
        if tensor.shape is None:
            dims.append(1)
        else:
            for one_dim in tensor.shape:
                dims.append(one_dim)

T
TeslaZhao 已提交
1657 1658 1659 1660 1661
        # Set up 2-d lod tensor
        np_lod = None
        if len(tensor.lod) > 0:
            np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1)

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        np_data = None
        _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format(
            tensor.name, tensor.elem_type, dims))
        if tensor.elem_type == 0:
            # VarType: INT64
            np_data = np.array(tensor.int64_data).astype(int64).reshape(dims)
        elif tensor.elem_type == 1:
            # VarType: FP32
            np_data = np.array(tensor.float_data).astype(float32).reshape(dims)
        elif tensor.elem_type == 2:
            # VarType: INT32
            np_data = np.array(tensor.int_data).astype(int32).reshape(dims)
        elif tensor.elem_type == 3:
            # VarType: FP64
            np_data = np.array(tensor.float64_data).astype(float64).reshape(
                dims)
        elif tensor.elem_type == 4:
            # VarType: INT16
            np_data = np.array(tensor.int_data).astype(int16).reshape(dims)
        elif tensor.elem_type == 5:
            # VarType: FP16
            np_data = np.array(tensor.float_data).astype(float16).reshape(dims)
        elif tensor.elem_type == 6:
            # VarType: BF16
            np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims)
        elif tensor.elem_type == 7:
            # VarType: UINT8
            np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims)
        elif tensor.elem_type == 8:
            # VarType: INT8
            np_data = np.array(tensor.int_data).astype(int8).reshape(dims)
        elif tensor.elem_type == 9:
            # VarType: BOOL
            np_data = np.array(tensor.bool_data).astype(bool).reshape(dims)
1696 1697 1698 1699
        elif tensor.elem_type == 13:
            # VarType: BYTES
            byte_data = BytesIO(tensor.byte_data)
            np_data = np.load(byte_data, allow_pickle=True)
1700 1701 1702 1703 1704 1705 1706
        else:
            _LOGGER.error("Sorry, the type {} of tensor {} is not supported.".
                          format(tensor.elem_type, tensor.name))
            raise ValueError(
                "Sorry, the type {} of tensor {} is not supported.".format(
                    tensor.elem_type, tensor.name))

T
TeslaZhao 已提交
1707
        return np_data, np_lod
1708

B
barrierye 已提交
1709
    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1728

1729
        # unpack key/value string list
1730
        for idx, key in enumerate(request.key):
1731
            dict_data[key] = request.value[idx]
T
TeslaZhao 已提交
1732
        log_id = request.logid
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

        # unpack proto.tensors data.
        for one_tensor in request.tensors:
            name = one_tensor.name
            elem_type = one_tensor.elem_type

            if one_tensor.name is None:
                _LOGGER.error("Tensor name is None.")
                raise ValueError("Tensor name is None.")

            numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type)
            if numpy_dtype is None:
                _LOGGER.error(
                    "elem_type:{} is dismatch in unpack_request_package.",
                    format(elem_type))
                raise ValueError("elem_type:{} error".format(elem_type))

            if numpy_dtype == "string":
                new_string = ""
                if one_tensor.str_data is None:
                    _LOGGER.error(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                    raise ValueError(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                for one_str in one_tensor.str_data:
                    new_string += one_str

                dict_data[name] = new_string
            else:
T
TeslaZhao 已提交
1764 1765 1766 1767
                np_data, np_lod = self.proto_tensor_2_numpy(one_tensor)
                dict_data[name] = np_data
                if np_lod is not None:
                    dict_data[name + ".lod"] = np_lod
1768

1769 1770 1771 1772
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}, time:{}"
                     .format(log_id, request.clientip, request.name,
                             request.method, time.time()))
T
TeslaZhao 已提交
1773 1774

        return dict_data, log_id, None, ""
B
barrierye 已提交
1775 1776 1777


class ResponseOp(Op):
1778 1779 1780 1781 1782 1783
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1784

B
barrierye 已提交
1785
    def __init__(self, input_ops):
1786 1787 1788
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1789 1790
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
1791

B
barrierye 已提交
1792
        # init op
1793
        try:
1794
            self.init_op()
1795
        except Exception as e:
B
barriery 已提交
1796 1797
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1798
            os._exit(-1)
B
barrierye 已提交
1799

1800 1801 1802 1803 1804 1805
        # init ResponseOp
        self.is_pack_tensor = False

    def set_pack_format(self, isTensor=False):
        self.is_pack_tensor = isTensor

B
barrierye 已提交
1806
    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1807
        """
1808 1809 1810 1811 1812 1813 1814 1815
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1816
        """
B
barrierye 已提交
1817
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1818 1819 1820
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1821
            # Framework level errors
B
barrierye 已提交
1822 1823 1824 1825
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1826
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1827
                for name, var in feed.items():
1828 1829
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1830 1831 1832 1833
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1834 1835
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1836 1837
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1838 1839
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1840
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1841
                        break
1842 1843
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1844
            else:
T
TeslaZhao 已提交
1845 1846 1847
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1848
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1849
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1850
        else:
1851
            # Product level errors
T
TeslaZhao 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1864
        return resp
1865 1866 1867


class VirtualOp(Op):
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1885 1886 1887

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1888
            name=name, input_ops=None, concurrency=concurrency)
1889 1890 1891
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1892 1893 1894 1895 1896 1897 1898 1899 1900
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1901 1902
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1903
    def _actual_pred_op_names(self, op):
1904 1905 1906 1907 1908 1909 1910 1911 1912
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1913
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1914 1915 1916 1917 1918 1919 1920
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1921
    def add_output_channel(self, channel):
1922 1923 1924 1925 1926 1927 1928 1929 1930
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1931
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1932
            _LOGGER.critical(
B
barriery 已提交
1933 1934 1935
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1936
            os._exit(-1)
1937
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1938 1939
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1940
        self._outputs.append(channel)
D
dongdaxiang 已提交
1941

1942
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1943
             is_thread_op):
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1958
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1959 1960 1961
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1962 1963 1964 1965 1966 1967 1968
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1969 1970
        while True:
            try:
1971
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1972
            except ChannelStopError:
B
barriery 已提交
1973
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1974
                self._finalize(is_thread_op)
B
barrierye 已提交
1975
                break
D
dongdaxiang 已提交
1976

B
barrierye 已提交
1977
            try:
1978 1979 1980 1981
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1982
            except ChannelStopError:
B
barriery 已提交
1983
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1984
                self._finalize(is_thread_op)
B
barrierye 已提交
1985
                break