README.md 9.7 KB
Newer Older
M
MRXLT 已提交
1 2
([简体中文](./README_CN.md)|English)

D
Dong Daxiang 已提交
3 4
<p align="center">
    <br>
T
TeslaZhao 已提交
5
<img src='doc/images/serving_logo.png' width = "600" height = "130">
D
Dong Daxiang 已提交
6 7
    <br>
<p>
8

D
Dong Daxiang 已提交
9 10
<p align="center">
    <br>
B
barrierye 已提交
11
    <a href="https://travis-ci.com/PaddlePaddle/Serving">
T
TeslaZhao 已提交
12 13
        <img alt="Build Status" src="https://img.shields.io/travis/com/PaddlePaddle/Serving/develop?style=flat-square">
        <img alt="Docs" src="https://img.shields.io/badge/docs-中文文档-brightgreen?style=flat-square">
T
TeslaZhao 已提交
14 15
        <img alt="Release" src="https://img.shields.io/badge/release-0.8.0-blue?style=flat-square">
        <img alt="Python" src="https://img.shields.io/badge/python-3.6/3.7/3.8/3.9-blue?style=flat-square">
T
TeslaZhao 已提交
16 17 18 19
        <img alt="License" src="https://img.shields.io/github/license/PaddlePaddle/Serving?color=blue&style=flat-square">
        <img alt="Forks" src="https://img.shields.io/github/forks/PaddlePaddle/Serving?color=yellow&style=flat-square">
        <img alt="Issues" src="https://img.shields.io/github/issues/PaddlePaddle/Serving?color=yellow&style=flat-square">
        <img alt="Contributors" src="https://img.shields.io/github/contributors/PaddlePaddle/Serving?color=orange&style=flat-square">
T
TeslaZhao 已提交
20
        <img alt="Community" src="https://img.shields.io/badge/join-Wechat,QQ-orange?style=flat-square">
B
barrierye 已提交
21
    </a>
D
Dong Daxiang 已提交
22 23
    <br>
<p>
D
Dong Daxiang 已提交
24

T
TeslaZhao 已提交
25 26
***

J
Jiawei Wang 已提交
27
The goal of Paddle Serving is to provide high-performance, flexible and easy-to-use industrial-grade online inference services for machine learning developers and enterprises.Paddle Serving supports multiple protocols such as RESTful, gRPC, bRPC, and provides inference solutions under a variety of hardware and multiple operating system environments, and many famous pre-trained model examples. The core features are as follows:
W
wangjiawei04 已提交
28

D
Dong Daxiang 已提交
29

T
TeslaZhao 已提交
30
- Integrate high-performance server-side inference engine paddle Inference and mobile-side engine paddle Lite. Models of other machine learning platforms (Caffe/TensorFlow/ONNX/PyTorch) can be migrated to paddle through [x2paddle](https://github.com/PaddlePaddle/X2Paddle).
J
Jiawei Wang 已提交
31 32 33
- There are two frameworks, namely high-performance C++ Serving and high-easy-to-use Python pipeline. The C++ Serving is based on the bRPC network framework to create a high-throughput, low-latency inference service, and its performance indicators are ahead of competing products. The Python pipeline is based on the gRPC/gRPC-Gateway network framework and the Python language to build a highly easy-to-use and high-throughput inference service. How to choose which one please see [Techinical Selection](doc/Serving_Design_EN.md#21-design-selection).
- Support multiple [protocols](doc/C++_Serving/Inference_Protocols_CN.md) such as HTTP, gRPC, bRPC, and provide C++, Python, Java language SDK.
- Design and implement a high-performance inference service framework for asynchronous pipelines based on directed acyclic graph (DAG), with features such as multi-model combination, asynchronous scheduling, concurrent inference, dynamic batch, multi-card multi-stream inference, etc.
T
TeslaZhao 已提交
34 35
- Adapt to a variety of commonly used computing hardwares, such as x86 (Intel) CPU, ARM CPU, Nvidia GPU, Kunlun XPU, HUAWEI Ascend 310/910, HYGON DCU、Nvidia Jetson etc. 
- Integrate acceleration libraries of Intel MKLDNN and  Nvidia TensorRT, and low-precision and quantitative inference.
T
TeslaZhao 已提交
36 37 38 39
- Provide a model security deployment solution, including encryption model deployment, and authentication mechanism, HTTPs security gateway, which is used in practice.
- Support cloud deployment, provide a deployment case of Baidu Cloud Intelligent Cloud kubernetes cluster.
- Provide more than 40 classic pre-model deployment examples, such as PaddleOCR, PaddleClas, PaddleDetection, PaddleSeg, PaddleNLP, PaddleRec and other suites, and more models continue to expand.
- Supports distributed deployment of large-scale sparse parameter index models, with features such as multiple tables, multiple shards, multiple copies, local high-frequency cache, etc., and can be deployed on a single machine or clouds.
W
wangjiawei04 已提交
40

W
wangjiawei04 已提交
41

T
TeslaZhao 已提交
42
<h2 align="center">Tutorial</h2>
W
wangjiawei04 已提交
43

J
Jiawei Wang 已提交
44

T
TeslaZhao 已提交
45
- AIStudio tutorial(Chinese) : [Paddle Serving服务化部署框架](https://www.paddlepaddle.org.cn/tutorials/projectdetail/2538249)
T
TeslaZhao 已提交
46
- Video tutorial(Chinese) : [深度学习服务化部署-以互联网应用为例](https://aistudio.baidu.com/aistudio/course/introduce/19084)
T
TeslaZhao 已提交
47
- Edge AI solution(Chinese) : [基于Paddle Serving&百度智能边缘BIE的边缘AI解决方案](https://mp.weixin.qq.com/s/j0EVlQXaZ7qmoz9Fv96Yrw)
T
TeslaZhao 已提交
48

D
Dong Daxiang 已提交
49
<p align="center">
T
TeslaZhao 已提交
50
    <img src="doc/images/demo.gif" width="700">
D
Dong Daxiang 已提交
51
</p>
D
Dong Daxiang 已提交
52

T
TeslaZhao 已提交
53 54
<h2 align="center">Documentation</h2>

D
Dong Daxiang 已提交
55

T
TeslaZhao 已提交
56
> Set up
W
wangjiawei04 已提交
57

T
TeslaZhao 已提交
58
This chapter guides you through the installation and deployment steps. It is strongly recommended to use Docker to deploy Paddle Serving. If you do not use docker, ignore the docker-related steps. Paddle Serving can be deployed on cloud servers using Kubernetes, running on many commonly hardwares such as ARM CPU, Intel CPU, Nvidia GPU, Kunlun XPU. The latest development kit of the develop branch is compiled and generated every day for developers to use.
W
wangjiawei04 已提交
59

J
Jiawei Wang 已提交
60
- [Install Paddle Serving using docker](doc/Install_EN.md)
T
TeslaZhao 已提交
61
- [Build Paddle Serving from Source with Docker](doc/Compile_EN.md)
T
TeslaZhao 已提交
62
- [Deploy Paddle Serving on Kubernetes(Chinese)](doc/Run_On_Kubernetes_CN.md)
T
TeslaZhao 已提交
63
- [Deploy Paddle Serving with Security gateway(Chinese)](doc/Serving_Auth_Docker_CN.md)
T
TeslaZhao 已提交
64
- Deploy on more hardwares[[百度昆仑](doc/Run_On_XPU_CN.md)[华为昇腾](doc/Run_On_NPU_CN.md)[海光DCU](doc/Run_On_DCU_CN.md)[Jetson](doc/Run_On_JETSON_CN.md)]
T
TeslaZhao 已提交
65
- [Docker Images](doc/Docker_Images_EN.md)
J
Jiawei Wang 已提交
66
- [Latest Wheel packages](doc/Latest_Packages_CN.md)
W
wangjiawei04 已提交
67

T
TeslaZhao 已提交
68
> Use
W
wangjiawei04 已提交
69

T
TeslaZhao 已提交
70
The first step is to call the model save interface to generate a model parameter configuration file (.prototxt), which will be used on the client and server. The second step, read the configuration and startup parameters and start the service. According to API documents and your case, the third step is to write client requests based on the SDK, and test the inference service.
D
Dong Daxiang 已提交
71

T
TeslaZhao 已提交
72 73 74
- [Quick Start](doc/Quick_Start_EN.md)
- [Save a servable model](doc/Save_EN.md)
- [Description of configuration and startup parameters](doc/Serving_Configure_EN.md)
T
TeslaZhao 已提交
75 76 77 78 79
- [Guide for RESTful/gRPC/bRPC APIs(Chinese)](doc/C++_Serving/Introduction_CN.md#42-多语言多协议Client)
- [Infer on quantizative models](doc/Low_Precision_EN.md)
- [Data format of classic models(Chinese)](doc/Process_data_CN.md)
- [C++ Serving(Chinese)](doc/C++_Serving/Introduction_CN.md) 
  - [Protocols(Chinese)](doc/C++_Serving/Inference_Protocols_CN.md)
T
TeslaZhao 已提交
80 81 82 83 84
  - [Hot loading models](doc/C++_Serving/Hot_Loading_EN.md)
  - [A/B Test](doc/C++_Serving/ABTest_EN.md)
  - [Encryption](doc/C++_Serving/Encryption_EN.md)
  - [Analyze and optimize performance(Chinese)](doc/C++_Serving/Performance_Tuning_CN.md)
  - [Benchmark(Chinese)](doc/C++_Serving/Benchmark_CN.md)
H
HexToString 已提交
85
  - [Multiple models in series(Chinese)](doc/C++_Serving/2+_model.md)
T
TeslaZhao 已提交
86
- [Python Pipeline](doc/Python_Pipeline/Pipeline_Design_EN.md)
T
TeslaZhao 已提交
87
  - [Analyze and optimize performance](doc/Python_Pipeline/Performance_Tuning_EN.md)
T
TeslaZhao 已提交
88
  - [TensorRT dynamic Shape](doc/TensorRT_Dynamic_Shape_EN.md)
T
TeslaZhao 已提交
89 90
  - [Benchmark(Chinese)](doc/Python_Pipeline/Benchmark_CN.md)
- Client SDK
T
TeslaZhao 已提交
91
  - [Python SDK(Chinese)](doc/C++_Serving/Introduction_CN.md#42-多语言多协议Client)
T
TeslaZhao 已提交
92
  - [JAVA SDK](doc/Java_SDK_EN.md)
T
TeslaZhao 已提交
93
  - [C++ SDK(Chinese)](doc/C++_Serving/Introduction_CN.md#42-多语言多协议Client)
T
TeslaZhao 已提交
94
- [Large-scale sparse parameter server](doc/Cube_Local_EN.md)
T
TeslaZhao 已提交
95

T
TeslaZhao 已提交
96
<br>
W
wangjiawei04 已提交
97

T
TeslaZhao 已提交
98 99
> Developers

T
TeslaZhao 已提交
100
For Paddle Serving developers, we provide extended documents such as custom OP, level of detail(LOD) processing.
T
TeslaZhao 已提交
101
- [Custom Operators](doc/C++_Serving/OP_EN.md)
T
TeslaZhao 已提交
102
- [Processing LoD Data](doc/LOD_EN.md)
T
TeslaZhao 已提交
103
- [FAQ(Chinese)](doc/FAQ_CN.md)
T
TeslaZhao 已提交
104 105 106

<h2 align="center">Model Zoo</h2>

W
wangjiawei04 已提交
107

T
TeslaZhao 已提交
108
Paddle Serving works closely with the Paddle model suite, and implements a large number of service deployment examples, including image classification, object detection, language and text recognition, Chinese part of speech, sentiment analysis, content recommendation and other types of examples,  for a total of 42 models.
J
Jiawei Wang 已提交
109

T
TeslaZhao 已提交
110
<p align="center">
T
TeslaZhao 已提交
111 112 113

| PaddleOCR | PaddleDetection | PaddleClas | PaddleSeg | PaddleRec | Paddle NLP | 
| :----:  | :----: | :----: | :----: | :----: | :----: | 
H
HexToString 已提交
114
| 8 | 12 | 14 | 2 | 3 | 4 | 
T
TeslaZhao 已提交
115

T
TeslaZhao 已提交
116
</p>
T
TeslaZhao 已提交
117

T
TeslaZhao 已提交
118
For more model examples, read [Model zoo](doc/Model_Zoo_EN.md)
T
TeslaZhao 已提交
119

T
TeslaZhao 已提交
120
<p align="center">
T
TeslaZhao 已提交
121 122
  <img src="https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/imgs_results/PP-OCRv2/PP-OCRv2-pic003.jpg?raw=true" width="345"/> 
  <img src="doc/images/detection.png" width="350">
T
TeslaZhao 已提交
123
</p>
W
fix doc  
wangjiawei04 已提交
124

D
Dong Daxiang 已提交
125

W
wangjiawei04 已提交
126
<h2 align="center">Community</h2>
D
Dong Daxiang 已提交
127

T
TeslaZhao 已提交
128 129 130
If you want to communicate with developers and other users? Welcome to join us, join the community through the following methods below.

### Wechat
T
TeslaZhao 已提交
131
- WeChat scavenging
T
TeslaZhao 已提交
132

T
TeslaZhao 已提交
133
<p align="center">
T
TeslaZhao 已提交
134
  <img src="doc/images/wechat_group_1.jpeg" width="250">
T
TeslaZhao 已提交
135
</p>
T
TeslaZhao 已提交
136 137

### QQ
T
TeslaZhao 已提交
138
- QQ Group(Group No.:697765514)
T
TeslaZhao 已提交
139

T
TeslaZhao 已提交
140
<p align="center">
T
TeslaZhao 已提交
141
  <img src="doc/images/qq_group_1.png" width="200">
T
TeslaZhao 已提交
142
</p>
T
TeslaZhao 已提交
143

D
Dong Daxiang 已提交
144

T
TeslaZhao 已提交
145
> Contribution
D
Dong Daxiang 已提交
146

T
TeslaZhao 已提交
147
If you want to contribute code to Paddle Serving, please reference [Contribution Guidelines](doc/Contribute_EN.md)
T
TeslaZhao 已提交
148 149 150 151 152 153
- Thanks to [@loveululu](https://github.com/loveululu) for providing python API of Cube.
- Thanks to [@EtachGu](https://github.com/EtachGu) in updating run docker codes.
- Thanks to [@BeyondYourself](https://github.com/BeyondYourself) in complementing the gRPC tutorial, updating the FAQ doc and modifying the mdkir command
- Thanks to [@mcl-stone](https://github.com/mcl-stone) in updating faster_rcnn benchmark
- Thanks to [@cg82616424](https://github.com/cg82616424) in updating the unet benchmark  modifying resize comment error
- Thanks to [@cuicheng01](https://github.com/cuicheng01) for providing 11 PaddleClas models
P
PaddlePM 已提交
154

T
TeslaZhao 已提交
155
> Feedback
D
Dong Daxiang 已提交
156

D
Dong Daxiang 已提交
157 158
For any feedback or to report a bug, please propose a [GitHub Issue](https://github.com/PaddlePaddle/Serving/issues).

T
TeslaZhao 已提交
159
> License
D
Dong Daxiang 已提交
160

D
Dong Daxiang 已提交
161
[Apache 2.0 License](https://github.com/PaddlePaddle/Serving/blob/develop/LICENSE)