lac_http_client.py 2.2 KB
Newer Older
H
HexToString 已提交
1
# encoding=utf-8
2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
H
HexToString 已提交
15
# pylint: disable=doc-string-missing
16

H
HexToString 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
from paddle_serving_client import HttpClient
from paddle_serving_app.reader import LACReader
import sys
import os
import io
import numpy as np

client = HttpClient(ip='127.0.0.1', port='9393')
client.load_client_config(sys.argv[1])
#client.set_ip('127.0.0.1')
#client.set_port('9292')
''' 
if you want use GRPC-client, set_use_grpc_client(True)
or you can directly use client.grpc_client_predict(...)
as for HTTP-client,set_use_grpc_client(False)(which is default)
or you can directly use client.http_client_predict(...)
'''
#client.set_use_grpc_client(True)
'''
if you want to enable Encrypt Module,uncommenting the following line
'''
#client.use_key("./key")
'''
if you want to compress,uncommenting the following line
'''
#client.set_response_compress(True)
#client.set_request_compress(True)
'''
we recommend use Proto data format in HTTP-body, set True(which is default)
if you want use JSON data format in HTTP-body, set False
'''
#client.set_http_proto(True)

reader = LACReader()
for line in sys.stdin:
    if len(line) <= 0:
        continue
    feed_data = reader.process(line)
    if len(feed_data) <= 0:
        continue
    print(feed_data)
    #fetch_map = client.predict(feed={"words": np.array(feed_data).reshape(len(feed_data), 1), "words.lod": [0, len(feed_data)]}, fetch=["crf_decode"], batch=True)
    fetch_map = client.predict(
        feed={
            "words": np.array(feed_data + feed_data).reshape(
                len(feed_data) * 2, 1),
            "words.lod": [0, len(feed_data), 2 * len(feed_data)]
        },
        fetch=["crf_decode"],
        batch=True)
    print(fetch_map)