# encoding=utf-8 # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle_serving_client import HttpClient from paddle_serving_app.reader import LACReader import sys import os import io import numpy as np client = HttpClient(ip='127.0.0.1', port='9393') client.load_client_config(sys.argv[1]) #client.set_ip('127.0.0.1') #client.set_port('9292') ''' if you want use GRPC-client, set_use_grpc_client(True) or you can directly use client.grpc_client_predict(...) as for HTTP-client,set_use_grpc_client(False)(which is default) or you can directly use client.http_client_predict(...) ''' #client.set_use_grpc_client(True) ''' if you want to enable Encrypt Module,uncommenting the following line ''' #client.use_key("./key") ''' if you want to compress,uncommenting the following line ''' #client.set_response_compress(True) #client.set_request_compress(True) ''' we recommend use Proto data format in HTTP-body, set True(which is default) if you want use JSON data format in HTTP-body, set False ''' #client.set_http_proto(True) reader = LACReader() for line in sys.stdin: if len(line) <= 0: continue feed_data = reader.process(line) if len(feed_data) <= 0: continue print(feed_data) #fetch_map = client.predict(feed={"words": np.array(feed_data).reshape(len(feed_data), 1), "words.lod": [0, len(feed_data)]}, fetch=["crf_decode"], batch=True) fetch_map = client.predict( feed={ "words": np.array(feed_data + feed_data).reshape( len(feed_data) * 2, 1), "words.lod": [0, len(feed_data), 2 * len(feed_data)] }, fetch=["crf_decode"], batch=True) print(fetch_map)