serve.py 8.2 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
    Host a trained paddle model with one line command
    Example:
        python -m paddle_serving_server.serve --model ./serving_server_model --port 9292
"""
import argparse
D
Dong Daxiang 已提交
21
import os
H
HexToString 已提交
22 23
import json
import base64
H
HexToString 已提交
24
import time
G
guru4elephant 已提交
25
from multiprocessing import Pool, Process
26
from paddle_serving_server_gpu import serve_args
M
MRXLT 已提交
27
from flask import Flask, request
T
TeslaZhao 已提交
28 29 30 31
if sys.version_info.major == 2:
    from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
elif sys.version_info.major == 3:
    from http.server import BaseHTTPRequestHandler, HTTPServer
M
MRXLT 已提交
32 33


H
HexToString 已提交
34
def start_gpu_card_model(index, gpuid, port, args):  # pylint: disable=doc-string-missing
G
guru4elephant 已提交
35
    gpuid = int(gpuid)
G
guru4elephant 已提交
36 37 38
    device = "gpu"
    if gpuid == -1:
        device = "cpu"
G
guru4elephant 已提交
39
    elif gpuid >= 0:
H
HexToString 已提交
40
        port = port + index
M
MRXLT 已提交
41 42
    thread_num = args.thread
    model = args.model
M
MRXLT 已提交
43
    mem_optim = args.mem_optim_off is False
M
MRXLT 已提交
44
    ir_optim = args.ir_optim
M
MRXLT 已提交
45
    max_body_size = args.max_body_size
B
barrierye 已提交
46
    use_multilang = args.use_multilang
Z
zhangjun 已提交
47 48 49
    workdir = args.workdir
    if gpuid >= 0:
        workdir = "{}_{}".format(args.workdir, gpuid)
M
MRXLT 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

    if model == "":
        print("You must specify your serving model")
        exit(-1)

    import paddle_serving_server_gpu as serving
    op_maker = serving.OpMaker()
    read_op = op_maker.create('general_reader')
    general_infer_op = op_maker.create('general_infer')
    general_response_op = op_maker.create('general_response')

    op_seq_maker = serving.OpSeqMaker()
    op_seq_maker.add_op(read_op)
    op_seq_maker.add_op(general_infer_op)
    op_seq_maker.add_op(general_response_op)

B
barrierye 已提交
66 67 68 69
    if use_multilang:
        server = serving.MultiLangServer()
    else:
        server = serving.Server()
M
MRXLT 已提交
70 71
    server.set_op_sequence(op_seq_maker.get_op_sequence())
    server.set_num_threads(thread_num)
M
MRXLT 已提交
72
    server.set_memory_optimize(mem_optim)
M
MRXLT 已提交
73
    server.set_ir_optimize(ir_optim)
M
MRXLT 已提交
74
    server.set_max_body_size(max_body_size)
M
add trt  
MRXLT 已提交
75
    if args.use_trt:
M
bug fix  
MRXLT 已提交
76
        server.set_trt()
M
MRXLT 已提交
77

Z
zhangjun 已提交
78 79 80 81
    if args.use_lite:
        server.set_lite()
        device = "arm"

Z
zhangjun 已提交
82
    server.set_device(device)
Z
zhangjun 已提交
83 84 85
    if args.use_xpu:
        server.set_xpu()

86 87 88 89 90
    if args.product_name != None:
        server.set_product_name(args.product_name)
    if args.container_id != None:
        server.set_container_id(args.container_id)

M
MRXLT 已提交
91
    server.load_model_config(model)
H
HexToString 已提交
92 93 94 95 96
    server.prepare_server(
        workdir=workdir,
        port=port,
        device=device,
        use_encryption_model=args.use_encryption_model)
G
guru4elephant 已提交
97 98
    if gpuid >= 0:
        server.set_gpuid(gpuid)
M
MRXLT 已提交
99 100
    server.run_server()

H
HexToString 已提交
101

H
HexToString 已提交
102
def start_multi_card(args, serving_port=None):  # pylint: disable=doc-string-missing
103
    gpus = ""
H
HexToString 已提交
104 105
    if serving_port == None:
        serving_port = args.port
106
    if args.gpu_ids == "":
M
MRXLT 已提交
107
        gpus = []
108 109
    else:
        gpus = args.gpu_ids.split(",")
M
MRXLT 已提交
110 111
        if "CUDA_VISIBLE_DEVICES" in os.environ:
            env_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
M
MRXLT 已提交
112 113 114
            for ids in gpus:
                if int(ids) >= len(env_gpus):
                    print(
T
TeslaZhao 已提交
115 116
                        " Max index of gpu_ids out of range, the number of CUDA_VISIBLE_DEVICES is {}."
                        .format(len(env_gpus)))
M
MRXLT 已提交
117
                    exit(-1)
M
MRXLT 已提交
118 119
        else:
            env_gpus = []
Z
zhangjun 已提交
120 121 122 123
    if args.use_lite:
        print("run arm server.")
        start_gpu_card_model(-1, -1, args)
    elif len(gpus) <= 0:
M
MRXLT 已提交
124
        print("gpu_ids not set, going to run cpu service.")
H
HexToString 已提交
125
        start_gpu_card_model(-1, -1, serving_port, args)
G
guru4elephant 已提交
126 127
    else:
        gpu_processes = []
G
guru4elephant 已提交
128
        for i, gpu_id in enumerate(gpus):
B
barrierye 已提交
129
            p = Process(
H
HexToString 已提交
130
                target=start_gpu_card_model,
H
HexToString 已提交
131
                args=(
B
barrierye 已提交
132
                    i,
M
MRXLT 已提交
133
                    gpu_id,
H
HexToString 已提交
134
                    serving_port,
B
barrierye 已提交
135
                    args, ))
G
guru4elephant 已提交
136 137 138 139 140
            gpu_processes.append(p)
        for p in gpu_processes:
            p.start()
        for p in gpu_processes:
            p.join()
B
barrierye 已提交
141

H
HexToString 已提交
142

H
HexToString 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
class MainService(BaseHTTPRequestHandler):
    def get_available_port(self):
        default_port = 12000
        for i in range(1000):
            if port_is_available(default_port + i):
                return default_port + i

    def start_serving(self):
        start_multi_card(args, serving_port)

    def get_key(self, post_data):
        if "key" not in post_data:
            return False
        else:
            key = base64.b64decode(post_data["key"])
            with open(args.model + "/key", "w") as f:
                f.write(key)
            return True

    def check_key(self, post_data):
        if "key" not in post_data:
            return False
        else:
            key = base64.b64decode(post_data["key"])
            with open(args.model + "/key", "r") as f:
                cur_key = f.read()
            return (key == cur_key)

    def start(self, post_data):
        post_data = json.loads(post_data)
        global p_flag
        if not p_flag:
            if args.use_encryption_model:
                print("waiting key for model")
                if not self.get_key(post_data):
                    print("not found key in request")
                    return False
            global serving_port
            global p
            serving_port = self.get_available_port()
            p = Process(target=self.start_serving)
            p.start()
            time.sleep(3)
            if p.is_alive():
                p_flag = True
            else:
                return False
        else:
            if p.is_alive():
                if not self.check_key(post_data):
                    return False
            else:
                return False
        return True

    def do_POST(self):
        content_length = int(self.headers['Content-Length'])
        post_data = self.rfile.read(content_length)
        if self.start(post_data):
            response = {"endpoint_list": [serving_port]}
        else:
            response = {"message": "start serving failed"}
        self.send_response(200)
        self.send_header('Content-type', 'application/json')
        self.end_headers()
        self.wfile.write(json.dumps(response))

B
barrierye 已提交
210

M
MRXLT 已提交
211
if __name__ == "__main__":
212
    args = serve_args()
213
    if args.name == "None":
H
HexToString 已提交
214 215 216 217 218 219 220 221 222 223 224 225
        from .web_service import port_is_available
        if args.use_encryption_model:
            p_flag = False
            p = None
            serving_port = 0
            server = HTTPServer(('localhost', int(args.port)), MainService)
            print(
                'Starting encryption server, waiting for key from client, use <Ctrl-C> to stop'
            )
            server.serve_forever()
        else:
            start_multi_card(args)
226
    else:
Y
Your Name 已提交
227
        from .web_service import WebService
228 229
        web_service = WebService(name=args.name)
        web_service.load_model_config(args.model)
Y
Your Name 已提交
230 231
        gpu_ids = args.gpu_ids
        if gpu_ids == "":
232 233 234
            if "CUDA_VISIBLE_DEVICES" in os.environ:
                gpu_ids = os.environ["CUDA_VISIBLE_DEVICES"]
        if len(gpu_ids) > 0:
Y
Your Name 已提交
235
            web_service.set_gpus(gpu_ids)
236
        web_service.prepare_server(
H
HexToString 已提交
237 238 239 240 241 242
            workdir=args.workdir,
            port=args.port,
            device=args.device,
            use_lite=args.use_lite,
            use_xpu=args.use_xpu,
            ir_optim=args.ir_optim)
M
MRXLT 已提交
243
        web_service.run_rpc_service()
M
MRXLT 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            web_service._launch_web_service()

        service_name = "/" + web_service.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return web_service.get_prediction(request)

        app_instance.run(host="0.0.0.0",
                         port=web_service.port,
                         threaded=False,
                         processes=4)