serve.py 8.0 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
    Host a trained paddle model with one line command
    Example:
        python -m paddle_serving_server.serve --model ./serving_server_model --port 9292
"""
import argparse
D
Dong Daxiang 已提交
21
import os
H
HexToString 已提交
22 23
import json
import base64
G
guru4elephant 已提交
24
from multiprocessing import Pool, Process
25
from paddle_serving_server_gpu import serve_args
M
MRXLT 已提交
26
from flask import Flask, request
H
HexToString 已提交
27
from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
M
MRXLT 已提交
28 29


H
HexToString 已提交
30
def start_gpu_card_model(index, gpuid, port, args):  # pylint: disable=doc-string-missing
G
guru4elephant 已提交
31
    gpuid = int(gpuid)
G
guru4elephant 已提交
32 33 34
    device = "gpu"
    if gpuid == -1:
        device = "cpu"
G
guru4elephant 已提交
35
    elif gpuid >= 0:
H
HexToString 已提交
36
        port = port + index
M
MRXLT 已提交
37 38
    thread_num = args.thread
    model = args.model
M
MRXLT 已提交
39
    mem_optim = args.mem_optim_off is False
M
MRXLT 已提交
40
    ir_optim = args.ir_optim
M
MRXLT 已提交
41
    max_body_size = args.max_body_size
B
barrierye 已提交
42
    use_multilang = args.use_multilang
Z
zhangjun 已提交
43 44 45
    workdir = args.workdir
    if gpuid >= 0:
        workdir = "{}_{}".format(args.workdir, gpuid)
M
MRXLT 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

    if model == "":
        print("You must specify your serving model")
        exit(-1)

    import paddle_serving_server_gpu as serving
    op_maker = serving.OpMaker()
    read_op = op_maker.create('general_reader')
    general_infer_op = op_maker.create('general_infer')
    general_response_op = op_maker.create('general_response')

    op_seq_maker = serving.OpSeqMaker()
    op_seq_maker.add_op(read_op)
    op_seq_maker.add_op(general_infer_op)
    op_seq_maker.add_op(general_response_op)

B
barrierye 已提交
62 63 64 65
    if use_multilang:
        server = serving.MultiLangServer()
    else:
        server = serving.Server()
M
MRXLT 已提交
66 67
    server.set_op_sequence(op_seq_maker.get_op_sequence())
    server.set_num_threads(thread_num)
M
MRXLT 已提交
68
    server.set_memory_optimize(mem_optim)
M
MRXLT 已提交
69
    server.set_ir_optimize(ir_optim)
M
MRXLT 已提交
70
    server.set_max_body_size(max_body_size)
M
add trt  
MRXLT 已提交
71
    if args.use_trt:
M
bug fix  
MRXLT 已提交
72
        server.set_trt()
M
MRXLT 已提交
73

Z
zhangjun 已提交
74 75 76 77 78 79 80
    if args.use_lite:
        server.set_lite()
        device = "arm"

    if args.use_xpu:
        server.set_xpu()

81 82 83 84 85
    if args.product_name != None:
        server.set_product_name(args.product_name)
    if args.container_id != None:
        server.set_container_id(args.container_id)

M
MRXLT 已提交
86
    server.load_model_config(model)
H
HexToString 已提交
87 88 89 90 91
    server.prepare_server(
        workdir=workdir,
        port=port,
        device=device,
        use_encryption_model=args.use_encryption_model)
G
guru4elephant 已提交
92 93
    if gpuid >= 0:
        server.set_gpuid(gpuid)
M
MRXLT 已提交
94 95
    server.run_server()

H
HexToString 已提交
96
def start_multi_card(args, serving_port=None):  # pylint: disable=doc-string-missing
97
    gpus = ""
H
HexToString 已提交
98 99
    if serving_port == None:
        serving_port = args.port
100
    if args.gpu_ids == "":
M
MRXLT 已提交
101
        gpus = []
102 103
    else:
        gpus = args.gpu_ids.split(",")
M
MRXLT 已提交
104 105
        if "CUDA_VISIBLE_DEVICES" in os.environ:
            env_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
M
MRXLT 已提交
106 107 108
            for ids in gpus:
                if int(ids) >= len(env_gpus):
                    print(
T
TeslaZhao 已提交
109 110
                        " Max index of gpu_ids out of range, the number of CUDA_VISIBLE_DEVICES is {}."
                        .format(len(env_gpus)))
M
MRXLT 已提交
111
                    exit(-1)
M
MRXLT 已提交
112 113
        else:
            env_gpus = []
Z
zhangjun 已提交
114 115 116 117
    if args.use_lite:
        print("run arm server.")
        start_gpu_card_model(-1, -1, args)
    elif len(gpus) <= 0:
M
MRXLT 已提交
118
        print("gpu_ids not set, going to run cpu service.")
H
HexToString 已提交
119
        start_gpu_card_model(-1, -1, serving_port, args)
G
guru4elephant 已提交
120 121
    else:
        gpu_processes = []
G
guru4elephant 已提交
122
        for i, gpu_id in enumerate(gpus):
B
barrierye 已提交
123
            p = Process(
H
HexToString 已提交
124 125
		target=start_gpu_card_model,
                args=(
B
barrierye 已提交
126
                    i,
M
MRXLT 已提交
127
                    gpu_id,
H
HexToString 已提交
128
		    serving_port,
B
barrierye 已提交
129
                    args, ))
G
guru4elephant 已提交
130 131 132 133 134
            gpu_processes.append(p)
        for p in gpu_processes:
            p.start()
        for p in gpu_processes:
            p.join()
B
barrierye 已提交
135

H
HexToString 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
class MainService(BaseHTTPRequestHandler):
    def get_available_port(self):
        default_port = 12000
        for i in range(1000):
            if port_is_available(default_port + i):
                return default_port + i

    def start_serving(self):
        start_multi_card(args, serving_port)

    def get_key(self, post_data):
        if "key" not in post_data:
            return False
        else:
            key = base64.b64decode(post_data["key"])
            with open(args.model + "/key", "w") as f:
                f.write(key)
            return True

    def check_key(self, post_data):
        if "key" not in post_data:
            return False
        else:
            key = base64.b64decode(post_data["key"])
            with open(args.model + "/key", "r") as f:
                cur_key = f.read()
            return (key == cur_key)

    def start(self, post_data):
        post_data = json.loads(post_data)
        global p_flag
        if not p_flag:
            if args.use_encryption_model:
                print("waiting key for model")
                if not self.get_key(post_data):
                    print("not found key in request")
                    return False
            global serving_port
            global p
            serving_port = self.get_available_port()
            p = Process(target=self.start_serving)
            p.start()
            time.sleep(3)
            if p.is_alive():
                p_flag = True
            else:
                return False
        else:
            if p.is_alive():
                if not self.check_key(post_data):
                    return False
            else:
                return False
        return True

    def do_POST(self):
        content_length = int(self.headers['Content-Length'])
        post_data = self.rfile.read(content_length)
        if self.start(post_data):
            response = {"endpoint_list": [serving_port]}
        else:
            response = {"message": "start serving failed"}
        self.send_response(200)
        self.send_header('Content-type', 'application/json')
        self.end_headers()
        self.wfile.write(json.dumps(response))

B
barrierye 已提交
203

M
MRXLT 已提交
204
if __name__ == "__main__":
205
    args = serve_args()
206
    if args.name == "None":
H
HexToString 已提交
207 208 209 210 211 212 213 214 215 216 217 218
        from .web_service import port_is_available
        if args.use_encryption_model:
            p_flag = False
            p = None
            serving_port = 0
            server = HTTPServer(('localhost', int(args.port)), MainService)
            print(
                'Starting encryption server, waiting for key from client, use <Ctrl-C> to stop'
            )
            server.serve_forever()
        else:
            start_multi_card(args)
219
    else:
Y
Your Name 已提交
220
        from .web_service import WebService
221 222
        web_service = WebService(name=args.name)
        web_service.load_model_config(args.model)
Y
Your Name 已提交
223 224
        gpu_ids = args.gpu_ids
        if gpu_ids == "":
225 226 227
            if "CUDA_VISIBLE_DEVICES" in os.environ:
                gpu_ids = os.environ["CUDA_VISIBLE_DEVICES"]
        if len(gpu_ids) > 0:
Y
Your Name 已提交
228
            web_service.set_gpus(gpu_ids)
229
        web_service.prepare_server(
Z
zhangjun 已提交
230 231
            workdir=args.workdir, port=args.port, device=args.device,
            use_lite=args.use_lite, use_xpu=args.use_xpu, ir_optim=args.ir_optim)
M
MRXLT 已提交
232
        web_service.run_rpc_service()
M
MRXLT 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            web_service._launch_web_service()

        service_name = "/" + web_service.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return web_service.get_prediction(request)

        app_instance.run(host="0.0.0.0",
                         port=web_service.port,
                         threaded=False,
                         processes=4)