## How to save a servable model of Paddle Serving?- Currently, paddle serving provides a save_model interface for users to access, the interface is similar with `save_inference_model` of Paddle.``` pythonimportpaddle_serving_client.ioasserving_ioserving_io.save_model("imdb_model","imdb_client_conf",{"words":data},{"prediction":prediction},fluid.default_main_program())````imdb_model` is the server side model with serving configurations. `imdb_client_conf` is the client rpc configurations. Serving has a dictionary for `Feed` and `Fetch` variables for client to assign. An alias name can be defined for each variable. An example of how to use alias name is as follows:``` pythonfrompaddle_serving_clientimportClientimportsysclient=Client()client.load_client_config(sys.argv[1])client.connect(["127.0.0.1:9393"])forlineinsys.stdin:group=line.strip().split()words=[int(x)forxingroup[1:int(group[0])+1]]label=[int(group[-1])]feed={"words":words,"label":label}fetch=["acc","cost","prediction"]fetch_map=client.predict(feed=feed,fetch=fetch)print("{} {}".format(fetch_map["prediction"][1],label[0]))```