## How to save a servable model of Paddle Serving? - Currently, paddle serving provides a save_model interface for users to access, the interface is similar with `save_inference_model` of Paddle. ``` python import paddle_serving_client.io as serving_io serving_io.save_model("imdb_model", "imdb_client_conf", {"words": data}, {"prediction": prediction}, fluid.default_main_program()) ``` `imdb_model` is the server side model with serving configurations. `imdb_client_conf` is the client rpc configurations. Serving has a dictionary for `Feed` and `Fetch` variables for client to assign. An alias name can be defined for each variable. An example of how to use alias name is as follows: ``` python from paddle_serving_client import Client import sys client = Client() client.load_client_config(sys.argv[1]) client.connect(["127.0.0.1:9393"]) for line in sys.stdin: group = line.strip().split() words = [int(x) for x in group[1:int(group[0]) + 1]] label = [int(group[-1])] feed = {"words": words, "label": label} fetch = ["acc", "cost", "prediction"] fetch_map = client.predict(feed=feed, fetch=fetch) print("{} {}".format(fetch_map["prediction"][1], label[0])) ```