benchmark.py 1.9 KB
Newer Older
D
Dong Daxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import time
import paddle
import sys
import requests

args = benchmark_args()

def single_func(idx, resource):
    if args.request == "rpc":
        client = Client()
        client.load_client_config(args.model)
        client.connect([args.endpoint])
        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.uci_housing.train(), buf_size=500), batch_size=1)
        start = time.time()
        for data in train_reader():
            fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["price"])
        end = time.time()
        return [[end - start]]
    elif args.request == "http":
        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.uci_housing.train(), buf_size=500), batch_size=1)
        start = time.time()
        for data in train_reader():
            r = requests.post('http://{}/uci/prediction'.format(args.endpoint),
                              data = {"x": data[0]})
        end = time.time()
        return [[end - start]]

multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
print(result)