from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner from paddle_serving_client.utils import benchmark_args import time import paddle import sys import requests args = benchmark_args() def single_func(idx, resource): if args.request == "rpc": client = Client() client.load_client_config(args.model) client.connect([args.endpoint]) train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=1) start = time.time() for data in train_reader(): fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["price"]) end = time.time() return [[end - start]] elif args.request == "http": train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=1) start = time.time() for data in train_reader(): r = requests.post('http://{}/uci/prediction'.format(args.endpoint), data = {"x": data[0]}) end = time.time() return [[end - start]] multi_thread_runner = MultiThreadRunner() result = multi_thread_runner.run(single_func, args.thread, {}) print(result)