general_response_op.cpp 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_response_op.h"
16 17
#include <algorithm>
#include <iostream>
M
MRXLT 已提交
18
#include <map>
19 20
#include <memory>
#include <sstream>
M
MRXLT 已提交
21
#include <utility>
22
#include "core/general-server/op/general_infer_helper.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
B
barrierye 已提交
37
using baidu::paddle_serving::predictor::general_model::ModelOutput;
38 39 40
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

41
int GeneralResponseOp::inference() {
H
HexToString 已提交
42 43
  const std::vector<std::string> pre_node_names = pre_names();
  VLOG(2) << "pre node names size: " << pre_node_names.size();
H
HexToString 已提交
44 45 46
  const GeneralBlob *input_blob = nullptr;
  int var_idx = 0;
  int cap = 1;
H
HexToString 已提交
47 48 49
  uint64_t log_id =
      get_depend_argument<GeneralBlob>(pre_node_names[0])->GetLogId();

W
wangjiawei04 已提交
50 51
  const Request *req = dynamic_cast<const Request *>(get_request_message());
  Response *res = mutable_data<Response>();
H
HexToString 已提交
52 53 54 55 56 57 58 59

  Timer timeline;
  // double response_time = 0.0;
  // timeline.Start();
  int64_t start = timeline.TimeStampUS();

  VLOG(2) << "(logid=" << log_id
          << ") start to call load general model_conf op";
W
wangjiawei04 已提交
60 61
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
H
HexToString 已提交
62 63

  VLOG(2) << "(logid=" << log_id << ") get resource pointer done.";
H
HexToString 已提交
64 65
  // get the last InferOP's model_config as ResponseOp's model_config by
  // default.
W
wangjiawei04 已提交
66
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
H
HexToString 已提交
67
      resource.get_general_model_config().back();
H
HexToString 已提交
68 69 70 71 72

  VLOG(2) << "(logid=" << log_id
          << ") max body size : " << brpc::fLU64::FLAGS_max_body_size;

  std::vector<int> fetch_index;
H
HexToString 已提交
73 74 75 76
  // this is based on GetOutPutNames() is ordered map.
  // and the order of Output is the same as the prototxt FetchVar.
  // otherwise, you can only get the Output by the corresponding of
  // Name -- Alias_name.
H
HexToString 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89
  if (req->fetch_var_names_size() > 0) {
    fetch_index.resize(req->fetch_var_names_size());
    for (int i = 0; i < req->fetch_var_names_size(); ++i) {
      fetch_index[i] =
          model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
    }
  } else {
    fetch_index.resize(model_config->_fetch_alias_name.size());
    for (int i = 0; i < model_config->_fetch_alias_name.size(); ++i) {
      fetch_index[i] =
          model_config
              ->_fetch_alias_name_to_index[model_config->_fetch_alias_name[i]];
    }
H
HexToString 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
  }

  for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
    const std::string &pre_name = pre_node_names[pi];
    VLOG(2) << "(logid=" << log_id << ") pre names[" << pi << "]: " << pre_name
            << " (" << pre_node_names.size() << ")";
    input_blob = get_depend_argument<GeneralBlob>(pre_name);
    // fprintf(stderr, "input(%s) blob address %x\n", pre_names.c_str(),
    // input_blob);
    if (!input_blob) {
      LOG(ERROR) << "(logid=" << log_id
                 << ") Failed mutable depended argument, op: " << pre_name;
      return -1;
W
wangjiawei04 已提交
103
    }
H
HexToString 已提交
104 105 106 107 108 109 110

    const TensorVector *in = &input_blob->tensor_vector;

    ModelOutput *output = res->add_outputs();
    // To get the order of model return values
    output->set_engine_name(pre_name);

H
HexToString 已提交
111 112
    var_idx = 0;
    // idx is the real index of FetchVar.
H
HexToString 已提交
113 114 115 116
    // idx is not the index of FetchList.
    // fetch_index is the real index in FetchVar of Fetchlist
    // for example, FetchVar = {0:A, 1:B, 2:C}
    // FetchList = {0:C,1:A}, at this situation.
H
HexToString 已提交
117
    // fetch_index = [2,0], C`index = 2 and A`index = 0
H
HexToString 已提交
118
    for (auto &idx : fetch_index) {
H
HexToString 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
      Tensor *tensor = output->add_tensor();
      tensor->set_name(in->at(idx).name);
      tensor->set_alias_name(model_config->_fetch_alias_name[idx]);
      for (int k = 0; k < in->at(idx).shape.size(); ++k) {
        VLOG(2) << "(logid=" << log_id << ") shape[" << k
                << "]: " << in->at(idx).shape[k];
        tensor->add_shape(in->at(idx).shape[k]);
      }
      std::string str_tensor_type = "is tensor";
      if (model_config->_is_lod_fetch[idx] && in->at(idx).lod.size() > 0) {
        str_tensor_type = "is lod_tensor";
        for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
          tensor->add_lod(in->at(idx).lod[0][j]);
H
HexToString 已提交
132 133
        }
      }
H
HexToString 已提交
134 135
      VLOG(2) << "(logid=" << log_id << ") out[" << idx << "] "
              << model_config->_fetch_name[idx] << str_tensor_type;
H
HexToString 已提交
136

H
HexToString 已提交
137
      cap = 1;
H
HexToString 已提交
138 139
      for (int j = 0; j < in->at(idx).shape.size(); ++j) {
        cap *= in->at(idx).shape[j];
W
wangjiawei04 已提交
140
      }
H
HexToString 已提交
141 142 143

      auto dtype = in->at(idx).dtype;
      if (dtype == paddle::PaddleDType::INT64) {
H
HexToString 已提交
144
        tensor->set_elem_type(0);
H
HexToString 已提交
145 146 147 148 149 150 151 152
        VLOG(2) << "(logid=" << log_id << ") Prepare int64 var ["
                << model_config->_fetch_name[idx] << "].";
        int64_t *data_ptr = static_cast<int64_t *>(in->at(idx).data.data());
        // from
        // https://stackoverflow.com/questions/15499641/copy-a-stdvector-to-a-repeated-field-from-protobuf-with-memcpy
        // `Swap` method is faster than `{}` method.
        google::protobuf::RepeatedField<int64_t> tmp_data(data_ptr,
                                                          data_ptr + cap);
H
HexToString 已提交
153
        output->mutable_tensor(var_idx)->mutable_int64_data()->Swap(&tmp_data);
H
HexToString 已提交
154
      } else if (dtype == paddle::PaddleDType::FLOAT32) {
H
HexToString 已提交
155
        tensor->set_elem_type(1);
H
HexToString 已提交
156 157
        VLOG(2) << "(logid=" << log_id << ") Prepare float var ["
                << model_config->_fetch_name[idx] << "].";
H
HexToString 已提交
158

H
HexToString 已提交
159 160 161
        float *data_ptr = static_cast<float *>(in->at(idx).data.data());
        google::protobuf::RepeatedField<float> tmp_data(data_ptr,
                                                        data_ptr + cap);
H
HexToString 已提交
162
        output->mutable_tensor(var_idx)->mutable_float_data()->Swap(&tmp_data);
H
HexToString 已提交
163
      } else if (dtype == paddle::PaddleDType::INT32) {
H
HexToString 已提交
164
        tensor->set_elem_type(2);
H
HexToString 已提交
165 166 167 168 169
        VLOG(2) << "(logid=" << log_id << ")Prepare int32 var ["
                << model_config->_fetch_name[idx] << "].";
        int32_t *data_ptr = static_cast<int32_t *>(in->at(idx).data.data());
        google::protobuf::RepeatedField<int32_t> tmp_data(data_ptr,
                                                          data_ptr + cap);
H
HexToString 已提交
170
        output->mutable_tensor(var_idx)->mutable_int_data()->Swap(&tmp_data);
H
HexToString 已提交
171 172 173 174 175
      }

      VLOG(2) << "(logid=" << log_id << ") fetch var ["
              << model_config->_fetch_name[idx] << "] ready";
      var_idx++;
W
wangjiawei04 已提交
176 177
    }
  }
H
HexToString 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

  if (req->profile_server()) {
    int64_t end = timeline.TimeStampUS();
    // TODO(barriery): multi-model profile_time.
    // At present, only the response_op is multi-input, so here we get
    // the profile_time by hard coding. It needs to be replaced with
    // a more elegant way.
    for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
      input_blob = get_depend_argument<GeneralBlob>(pre_node_names[pi]);
      VLOG(2) << "(logid=" << log_id
              << ") p size for input blob: " << input_blob->p_size;
      int profile_time_idx = -1;
      if (pi == 0) {
        profile_time_idx = 0;
      } else {
        profile_time_idx = input_blob->p_size - 2;
      }
      for (; profile_time_idx < input_blob->p_size; ++profile_time_idx) {
        res->add_profile_time(input_blob->time_stamp[profile_time_idx]);
      }
    }
    // TODO(guru4elephant): find more elegant way to do this
    res->add_profile_time(start);
    res->add_profile_time(end);
  }
203 204
  return 0;
}
205 206

DEFINE_OP(GeneralResponseOp);
207 208 209

}  // namespace serving
}  // namespace paddle_serving
H
HexToString 已提交
210
}  // namespace baidu