general_model.cpp 14.2 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
21 22 23
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
24
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
25 26 27
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
H
HexToString 已提交
28
enum ProtoDataType { P_INT64, P_FLOAT32, P_INT32, P_STRING };
29
std::once_flag gflags_init_flag;
M
MRXLT 已提交
30
namespace py = pybind11;
31

G
guru4elephant 已提交
32 33 34
namespace baidu {
namespace paddle_serving {
namespace general_model {
35
using configure::GeneralModelConfig;
G
guru4elephant 已提交
36

37 38
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
39
#ifndef BCLOUD
M
MRXLT 已提交
40
    FLAGS_logtostderr = true;
41
#endif
M
MRXLT 已提交
42 43 44 45
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
H
HexToString 已提交
46
    for (size_t i = 0; i < argv.size(); ++i) {
M
MRXLT 已提交
47 48 49 50 51 52 53
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
54 55
}

H
HexToString 已提交
56
int PredictorClient::init(const std::vector<std::string> &conf_file) {
57 58
  try {
    GeneralModelConfig model_config;
H
HexToString 已提交
59
    if (configure::read_proto_conf(conf_file[0].c_str(), &model_config) != 0) {
60
      LOG(ERROR) << "Failed to load general model config"
H
HexToString 已提交
61
                 << ", file path: " << conf_file[0];
62 63
      return -1;
    }
H
HexToString 已提交
64

65 66 67 68
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
H
HexToString 已提交
69
    _feed_name.clear();
H
HexToString 已提交
70
    VLOG(2) << "feed var num: " << feed_var_num;
71 72
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
H
HexToString 已提交
73 74 75
      VLOG(2) << "feed [" << i << "]"
              << " name: " << model_config.feed_var(i).name();
      _feed_name.push_back(model_config.feed_var(i).name());
76 77
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
78
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
79 80
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
81 82
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
83
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
84 85
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
86 87 88
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
89
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
90 91
    }

H
HexToString 已提交
92
    if (conf_file.size() > 1) {
H
HexToString 已提交
93
      model_config.Clear();
H
HexToString 已提交
94 95
      if (configure::read_proto_conf(conf_file[conf_file.size() - 1].c_str(),
                                     &model_config) != 0) {
H
HexToString 已提交
96
        LOG(ERROR) << "Failed to load general model config"
H
HexToString 已提交
97
                   << ", file path: " << conf_file[conf_file.size() - 1];
H
HexToString 已提交
98 99 100 101 102
        return -1;
      }
    }
    int fetch_var_num = model_config.fetch_var_size();
    VLOG(2) << "fetch_var_num: " << fetch_var_num;
103 104
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
105 106
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
107 108
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
109 110
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
111
    }
M
MRXLT 已提交
112
  } catch (std::exception &e) {
113 114
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
115
  }
116
  return 0;
G
guru4elephant 已提交
117 118
}

M
MRXLT 已提交
119 120
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
121 122 123
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}
124 125 126
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
B
barrierye 已提交
127
  return 0;
128 129
}

M
MRXLT 已提交
130
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
131 132 133 134
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
135
  // _api.thrd_initialize();
B
barrierye 已提交
136
  return 0;
G
guru4elephant 已提交
137 138
}

G
guru4elephant 已提交
139
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
140 141
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
142 143 144 145
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
146
  // _api.thrd_initialize();
B
barrierye 已提交
147
  return 0;
G
guru4elephant 已提交
148 149
}

M
MRXLT 已提交
150
int PredictorClient::numpy_predict(
H
HexToString 已提交
151
    const std::vector<py::array_t<float>> &float_feed,
M
MRXLT 已提交
152 153
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int>> &float_shape,
W
wangjiawei04 已提交
154
    const std::vector<std::vector<int>> &float_lod_slot_batch,
H
HexToString 已提交
155
    const std::vector<py::array_t<int64_t>> &int_feed,
M
MRXLT 已提交
156 157
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::vector<int>> &int_shape,
W
wangjiawei04 已提交
158
    const std::vector<std::vector<int>> &int_lod_slot_batch,
H
HexToString 已提交
159
    const std::vector<std::string> &string_feed,
H
HexToString 已提交
160 161 162
    const std::vector<std::string> &string_feed_name,
    const std::vector<std::vector<int>> &string_shape,
    const std::vector<std::vector<int>> &string_lod_slot_batch,
M
MRXLT 已提交
163 164
    const std::vector<std::string> &fetch_name,
    PredictorRes &predict_res_batch,
165 166
    const int &pid,
    const uint64_t log_id) {
M
MRXLT 已提交
167 168 169 170 171 172 173 174 175 176 177
  predict_res_batch.clear();
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

  _api.thrd_initialize();
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
H
HexToString 已提交
178
  VLOG(2) << "string feed name size: " << string_feed_name.size();
M
MRXLT 已提交
179 180
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
  Request req;
181
  req.set_log_id(log_id);
M
MRXLT 已提交
182 183 184 185
  for (auto &name : fetch_name) {
    req.add_fetch_var_names(name);
  }

H
HexToString 已提交
186
  int vec_idx = 0;
H
HexToString 已提交
187 188
  // batch is already in Tensor.
  std::vector<Tensor *> tensor_vec;
M
MRXLT 已提交
189

H
HexToString 已提交
190 191 192
  for (auto &name : float_feed_name) {
    tensor_vec.push_back(req.add_tensor());
  }
H
HexToString 已提交
193

H
HexToString 已提交
194 195 196
  for (auto &name : int_feed_name) {
    tensor_vec.push_back(req.add_tensor());
  }
M
MRXLT 已提交
197

H
HexToString 已提交
198 199 200
  for (auto &name : string_feed_name) {
    tensor_vec.push_back(req.add_tensor());
  }
H
HexToString 已提交
201

H
HexToString 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  vec_idx = 0;
  for (auto &name : float_feed_name) {
    int idx = _feed_name_to_idx[name];
    if (idx >= tensor_vec.size()) {
      LOG(ERROR) << "idx > tensor_vec.size()";
      return -1;
    }
    VLOG(2) << "prepare float feed " << name << " idx " << idx;
    int nbytes = float_feed[vec_idx].nbytes();
    void *rawdata_ptr = (void *)(float_feed[vec_idx].data(0));
    int total_number = float_feed[vec_idx].size();
    Tensor *tensor = tensor_vec[idx];

    VLOG(2) << "prepare float feed " << name << " shape size "
            << float_shape[vec_idx].size();
    for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
      tensor->add_shape(float_shape[vec_idx][j]);
    }
    for (uint32_t j = 0; j < float_lod_slot_batch[vec_idx].size(); ++j) {
      tensor->add_lod(float_lod_slot_batch[vec_idx][j]);
M
MRXLT 已提交
222
    }
H
HexToString 已提交
223
    tensor->set_elem_type(P_FLOAT32);
H
HexToString 已提交
224

H
HexToString 已提交
225 226
    tensor->set_name(_feed_name[idx]);
    tensor->set_alias_name(name);
M
MRXLT 已提交
227

H
HexToString 已提交
228 229 230 231
    tensor->mutable_float_data()->Resize(total_number, 0);
    memcpy(tensor->mutable_float_data()->mutable_data(), rawdata_ptr, nbytes);
    vec_idx++;
  }
M
MRXLT 已提交
232

H
HexToString 已提交
233 234 235 236 237 238
  vec_idx = 0;
  for (auto &name : int_feed_name) {
    int idx = _feed_name_to_idx[name];
    if (idx >= tensor_vec.size()) {
      LOG(ERROR) << "idx > tensor_vec.size()";
      return -1;
M
MRXLT 已提交
239
    }
H
HexToString 已提交
240 241 242 243
    Tensor *tensor = tensor_vec[idx];
    int nbytes = int_feed[vec_idx].nbytes();
    void *rawdata_ptr = (void *)(int_feed[vec_idx].data(0));
    int total_number = int_feed[vec_idx].size();
M
MRXLT 已提交
244

H
HexToString 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
      tensor->add_shape(int_shape[vec_idx][j]);
    }
    for (uint32_t j = 0; j < int_lod_slot_batch[vec_idx].size(); ++j) {
      tensor->add_lod(int_lod_slot_batch[vec_idx][j]);
    }
    tensor->set_elem_type(_type[idx]);
    tensor->set_name(_feed_name[idx]);
    tensor->set_alias_name(name);

    if (_type[idx] == P_INT64) {
      tensor->mutable_int64_data()->Resize(total_number, 0);
      memcpy(tensor->mutable_int64_data()->mutable_data(), rawdata_ptr, nbytes);
    } else {
      tensor->mutable_int_data()->Resize(total_number, 0);
      memcpy(tensor->mutable_int_data()->mutable_data(), rawdata_ptr, nbytes);
    }
    vec_idx++;
  }
H
HexToString 已提交
264

H
HexToString 已提交
265 266 267 268 269 270 271 272
  vec_idx = 0;
  for (auto &name : string_feed_name) {
    int idx = _feed_name_to_idx[name];
    if (idx >= tensor_vec.size()) {
      LOG(ERROR) << "idx > tensor_vec.size()";
      return -1;
    }
    Tensor *tensor = tensor_vec[idx];
H
HexToString 已提交
273

H
HexToString 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    for (uint32_t j = 0; j < string_shape[vec_idx].size(); ++j) {
      tensor->add_shape(string_shape[vec_idx][j]);
    }
    for (uint32_t j = 0; j < string_lod_slot_batch[vec_idx].size(); ++j) {
      tensor->add_lod(string_lod_slot_batch[vec_idx][j]);
    }
    tensor->set_elem_type(P_STRING);
    tensor->set_name(_feed_name[idx]);
    tensor->set_alias_name(name);

    const int string_shape_size = string_shape[vec_idx].size();
    // string_shape[vec_idx] = [1];cause numpy has no datatype of string.
    // we pass string via vector<vector<string> >.
    if (string_shape_size != 1) {
      LOG(ERROR) << "string_shape_size should be 1-D, but received is : "
                 << string_shape_size;
      return -1;
    }
    switch (string_shape_size) {
      case 1: {
        tensor->add_data(string_feed[vec_idx]);
        break;
H
HexToString 已提交
296 297
      }
    }
H
HexToString 已提交
298
    vec_idx++;
M
MRXLT 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  }

  int64_t preprocess_end = timeline.TimeStampUS();
  int64_t client_infer_start = timeline.TimeStampUS();
  Response res;

  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    return -1;
  } else {
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
    VLOG(2) << "get model output num";
    uint32_t model_num = res.outputs_size();
    VLOG(2) << "model num: " << model_num;
B
barrierye 已提交
325 326 327
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
B
barrierye 已提交
328 329
      ModelRes model;
      model.set_engine_name(output.engine_name());
H
HexToString 已提交
330 331 332
      // 在ResponseOp处,已经按照fetch_name对输出数据进行了处理
      // 所以,输出的数据与fetch_name是严格对应的,按顺序处理即可。
      for (int idx = 0; idx < output.tensor_size(); ++idx) {
B
barrierye 已提交
333
        // int idx = _fetch_name_to_idx[name];
H
HexToString 已提交
334 335
        const std::string name = output.tensor(idx).alias_name();
        model._tensor_alias_names.push_back(name);
H
HexToString 已提交
336
        int shape_size = output.tensor(idx).shape_size();
B
barrierye 已提交
337 338
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
B
barrierye 已提交
339 340
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
H
HexToString 已提交
341
          model._shape_map[name][i] = output.tensor(idx).shape(i);
B
barrierye 已提交
342
        }
H
HexToString 已提交
343
        int lod_size = output.tensor(idx).lod_size();
B
barrierye 已提交
344 345 346
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
H
HexToString 已提交
347
            model._lod_map[name][i] = output.tensor(idx).lod(i);
B
barrierye 已提交
348
          }
349 350
        }

H
HexToString 已提交
351
        if (_fetch_name_to_type[name] == P_INT64) {
M
MRXLT 已提交
352
          VLOG(2) << "ferch var " << name << "type int64";
H
HexToString 已提交
353
          int size = output.tensor(idx).int64_data_size();
W
WangXi 已提交
354
          model._int64_value_map[name] = std::vector<int64_t>(
H
HexToString 已提交
355 356
              output.tensor(idx).int64_data().begin(),
              output.tensor(idx).int64_data().begin() + size);
H
HexToString 已提交
357
        } else if (_fetch_name_to_type[name] == P_FLOAT32) {
B
barrierye 已提交
358
          VLOG(2) << "fetch var " << name << "type float";
H
HexToString 已提交
359
          int size = output.tensor(idx).float_data_size();
W
WangXi 已提交
360
          model._float_value_map[name] = std::vector<float>(
H
HexToString 已提交
361 362
              output.tensor(idx).float_data().begin(),
              output.tensor(idx).float_data().begin() + size);
H
HexToString 已提交
363
        } else if (_fetch_name_to_type[name] == P_INT32) {
M
MRXLT 已提交
364
          VLOG(2) << "fetch var " << name << "type int32";
H
HexToString 已提交
365
          int size = output.tensor(idx).int_data_size();
M
MRXLT 已提交
366
          model._int32_value_map[name] = std::vector<int32_t>(
H
HexToString 已提交
367 368
              output.tensor(idx).int_data().begin(),
              output.tensor(idx).int_data().begin() + size);
M
MRXLT 已提交
369
        }
M
MRXLT 已提交
370
      }
B
barrierye 已提交
371
      predict_res_batch.add_model_res(std::move(model));
M
MRXLT 已提交
372
    }
373
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
374 375
  }

M
MRXLT 已提交
376 377 378
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
379
        << "pid:" << pid << "\t"
M
MRXLT 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
D
dongdaxiang 已提交
397 398

  _api.thrd_clear();
M
MRXLT 已提交
399
  return 0;
M
MRXLT 已提交
400
}
G
guru4elephant 已提交
401 402 403
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu