general_model.cpp 15.4 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
21 22 23
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
24
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
25 26 27 28 29
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;
H
HexToString 已提交
30
enum ProtoDataType { P_INT64, P_FLOAT32, P_INT32, P_STRING };
31
std::once_flag gflags_init_flag;
M
MRXLT 已提交
32
namespace py = pybind11;
33

G
guru4elephant 已提交
34 35 36
namespace baidu {
namespace paddle_serving {
namespace general_model {
37
using configure::GeneralModelConfig;
G
guru4elephant 已提交
38

39 40
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
41
#ifndef BCLOUD
M
MRXLT 已提交
42
    FLAGS_logtostderr = true;
43
#endif
M
MRXLT 已提交
44 45 46 47
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
H
HexToString 已提交
48
    for (size_t i = 0; i < argv.size(); ++i) {
M
MRXLT 已提交
49 50 51 52 53 54 55
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
56 57
}

H
HexToString 已提交
58
int PredictorClient::init(const std::vector<std::string> &conf_file) {
59 60
  try {
    GeneralModelConfig model_config;
H
HexToString 已提交
61
    if (configure::read_proto_conf(conf_file[0].c_str(), &model_config) != 0) {
62
      LOG(ERROR) << "Failed to load general model config"
H
HexToString 已提交
63
                 << ", file path: " << conf_file[0];
64 65
      return -1;
    }
H
HexToString 已提交
66

67 68 69 70
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
H
HexToString 已提交
71
    VLOG(2) << "feed var num: " << feed_var_num;
72 73
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
74 75
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
76
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
77 78
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
79 80
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
81
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
82 83
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
84 85 86
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
87
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
88 89
    }

H
HexToString 已提交
90
    if (conf_file.size() > 1) {
H
HexToString 已提交
91
      model_config.Clear();
H
HexToString 已提交
92 93
      if (configure::read_proto_conf(conf_file[conf_file.size() - 1].c_str(),
                                     &model_config) != 0) {
H
HexToString 已提交
94
        LOG(ERROR) << "Failed to load general model config"
H
HexToString 已提交
95
                   << ", file path: " << conf_file[conf_file.size() - 1];
H
HexToString 已提交
96 97 98 99 100
        return -1;
      }
    }
    int fetch_var_num = model_config.fetch_var_size();
    VLOG(2) << "fetch_var_num: " << fetch_var_num;
101 102
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
103 104
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
105 106
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
107 108
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
109
    }
M
MRXLT 已提交
110
  } catch (std::exception &e) {
111 112
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
113
  }
114
  return 0;
G
guru4elephant 已提交
115 116
}

M
MRXLT 已提交
117 118
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
119 120 121
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}
122 123 124
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
B
barrierye 已提交
125
  return 0;
126 127
}

M
MRXLT 已提交
128
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
129 130 131 132
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
133
  // _api.thrd_initialize();
B
barrierye 已提交
134
  return 0;
G
guru4elephant 已提交
135 136
}

G
guru4elephant 已提交
137
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
138 139
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
140 141 142 143
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
144
  // _api.thrd_initialize();
B
barrierye 已提交
145
  return 0;
G
guru4elephant 已提交
146 147
}

M
MRXLT 已提交
148 149 150 151
int PredictorClient::numpy_predict(
    const std::vector<std::vector<py::array_t<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int>> &float_shape,
W
wangjiawei04 已提交
152
    const std::vector<std::vector<int>> &float_lod_slot_batch,
M
MRXLT 已提交
153 154 155
    const std::vector<std::vector<py::array_t<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::vector<int>> &int_shape,
W
wangjiawei04 已提交
156
    const std::vector<std::vector<int>> &int_lod_slot_batch,
H
HexToString 已提交
157 158 159 160
    const std::vector<std::vector<std::string>> &string_feed_batch,
    const std::vector<std::string> &string_feed_name,
    const std::vector<std::vector<int>> &string_shape,
    const std::vector<std::vector<int>> &string_lod_slot_batch,
M
MRXLT 已提交
161 162
    const std::vector<std::string> &fetch_name,
    PredictorRes &predict_res_batch,
163 164
    const int &pid,
    const uint64_t log_id) {
H
HexToString 已提交
165
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
H
HexToString 已提交
166 167
  batch_size = batch_size > string_feed_batch.size() ? batch_size
                                                     : string_feed_batch.size();
D
dongdaxiang 已提交
168
  VLOG(2) << "batch size: " << batch_size;
169 170
  // batch_size must be 1, cause batch is already in Tensor.
  // I suggest to remove the outside vector<>.
M
MRXLT 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183
  predict_res_batch.clear();
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

  int fetch_name_num = fetch_name.size();

  _api.thrd_initialize();
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
H
HexToString 已提交
184
  VLOG(2) << "string feed name size: " << string_feed_name.size();
M
MRXLT 已提交
185 186
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
  Request req;
187
  req.set_log_id(log_id);
M
MRXLT 已提交
188 189 190 191
  for (auto &name : fetch_name) {
    req.add_fetch_var_names(name);
  }

H
HexToString 已提交
192
  int vec_idx = 0;
193 194
  // batch_size can only be 1, cause batch is already in Tensor.
  // if batch_size is not 1, error will occur in C++ part.
M
MRXLT 已提交
195 196 197 198 199 200
  for (int bi = 0; bi < batch_size; bi++) {
    VLOG(2) << "prepare batch " << bi;
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<py::array_t<float>> float_feed = float_feed_batch[bi];
    std::vector<py::array_t<int64_t>> int_feed = int_feed_batch[bi];
H
HexToString 已提交
201
    std::vector<std::string> string_feed = string_feed_batch[bi];
M
MRXLT 已提交
202 203 204 205 206 207 208 209
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

H
HexToString 已提交
210 211 212 213
    for (auto &name : string_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

H
HexToString 已提交
214 215
    VLOG(2) << "batch [" << bi << "] "
            << "prepared";
M
MRXLT 已提交
216

H
HexToString 已提交
217
    vec_idx = 0;
M
MRXLT 已提交
218 219
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
H
HexToString 已提交
220 221 222 223
      if (idx >= tensor_vec.size()) {
        LOG(ERROR) << "idx > tensor_vec.size()";
        return -1;
      }
H
HexToString 已提交
224
      int nbytes = float_feed[vec_idx].nbytes();
H
HexToString 已提交
225
      void *rawdata_ptr = (void *)(float_feed[vec_idx].data(0));
H
HexToString 已提交
226
      int total_number = float_feed[vec_idx].size();
M
MRXLT 已提交
227
      Tensor *tensor = tensor_vec[idx];
H
HexToString 已提交
228

M
MRXLT 已提交
229 230 231 232 233
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
        tensor->add_shape(float_shape[vec_idx][j]);
      }
W
wangjiawei04 已提交
234 235 236
      for (uint32_t j = 0; j < float_lod_slot_batch[vec_idx].size(); ++j) {
        tensor->add_lod(float_lod_slot_batch[vec_idx][j]);
      }
H
HexToString 已提交
237
      tensor->set_elem_type(P_FLOAT32);
H
HexToString 已提交
238

H
HexToString 已提交
239 240
      tensor->mutable_float_data()->Resize(total_number, 0);
      memcpy(tensor->mutable_float_data()->mutable_data(), rawdata_ptr, nbytes);
M
MRXLT 已提交
241 242
      vec_idx++;
    }
H
HexToString 已提交
243

M
MRXLT 已提交
244 245 246 247 248 249
    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";

    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
H
HexToString 已提交
250 251 252 253
      if (idx >= tensor_vec.size()) {
        LOG(ERROR) << "idx > tensor_vec.size()";
        return -1;
      }
M
MRXLT 已提交
254
      Tensor *tensor = tensor_vec[idx];
H
HexToString 已提交
255
      int nbytes = int_feed[vec_idx].nbytes();
H
HexToString 已提交
256
      void *rawdata_ptr = (void *)(int_feed[vec_idx].data(0));
H
HexToString 已提交
257
      int total_number = int_feed[vec_idx].size();
M
MRXLT 已提交
258

M
MRXLT 已提交
259 260 261
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
        tensor->add_shape(int_shape[vec_idx][j]);
      }
W
wangjiawei04 已提交
262 263 264
      for (uint32_t j = 0; j < int_lod_slot_batch[vec_idx].size(); ++j) {
        tensor->add_lod(int_lod_slot_batch[vec_idx][j]);
      }
M
MRXLT 已提交
265 266
      tensor->set_elem_type(_type[idx]);

H
HexToString 已提交
267
      if (_type[idx] == P_INT64) {
H
HexToString 已提交
268 269 270
        tensor->mutable_int64_data()->Resize(total_number, 0);
        memcpy(
            tensor->mutable_int64_data()->mutable_data(), rawdata_ptr, nbytes);
M
MRXLT 已提交
271
      } else {
H
HexToString 已提交
272 273
        tensor->mutable_int_data()->Resize(total_number, 0);
        memcpy(tensor->mutable_int_data()->mutable_data(), rawdata_ptr, nbytes);
M
MRXLT 已提交
274
      }
H
HexToString 已提交
275
      vec_idx++;
M
MRXLT 已提交
276 277 278 279
    }

    VLOG(2) << "batch [" << bi << "] "
            << "int feed value prepared";
H
HexToString 已提交
280 281 282 283

    vec_idx = 0;
    for (auto &name : string_feed_name) {
      int idx = _feed_name_to_idx[name];
H
HexToString 已提交
284 285 286 287
      if (idx >= tensor_vec.size()) {
        LOG(ERROR) << "idx > tensor_vec.size()";
        return -1;
      }
H
HexToString 已提交
288 289 290 291 292 293 294 295 296 297 298
      Tensor *tensor = tensor_vec[idx];

      for (uint32_t j = 0; j < string_shape[vec_idx].size(); ++j) {
        tensor->add_shape(string_shape[vec_idx][j]);
      }
      for (uint32_t j = 0; j < string_lod_slot_batch[vec_idx].size(); ++j) {
        tensor->add_lod(string_lod_slot_batch[vec_idx][j]);
      }
      tensor->set_elem_type(P_STRING);

      const int string_shape_size = string_shape[vec_idx].size();
H
HexToString 已提交
299 300
      // string_shape[vec_idx] = [1];cause numpy has no datatype of string.
      // we pass string via vector<vector<string> >.
H
HexToString 已提交
301
      if (string_shape_size != 1) {
H
HexToString 已提交
302 303
        LOG(ERROR) << "string_shape_size should be 1-D, but received is : "
                   << string_shape_size;
H
HexToString 已提交
304 305 306 307 308 309 310 311 312 313
        return -1;
      }
      switch (string_shape_size) {
        case 1: {
          tensor->add_data(string_feed[vec_idx]);
          break;
        }
      }
      vec_idx++;
    }
H
HexToString 已提交
314

H
HexToString 已提交
315 316
    VLOG(2) << "batch [" << bi << "] "
            << "string feed value prepared";
M
MRXLT 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  }

  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

  Response res;

  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    return -1;
  } else {
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
    VLOG(2) << "get model output num";
    uint32_t model_num = res.outputs_size();
    VLOG(2) << "model num: " << model_num;
B
barrierye 已提交
345 346 347
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
B
barrierye 已提交
348 349
      ModelRes model;
      model.set_engine_name(output.engine_name());
B
barrierye 已提交
350

M
MRXLT 已提交
351
      int idx = 0;
M
MRXLT 已提交
352
      for (auto &name : fetch_name) {
B
barrierye 已提交
353
        // int idx = _fetch_name_to_idx[name];
B
barrierye 已提交
354
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
B
barrierye 已提交
355 356
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
B
barrierye 已提交
357 358 359 360 361 362 363 364 365 366 367
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
368
        }
B
barrierye 已提交
369
        idx += 1;
B
barrierye 已提交
370
      }
371

M
MRXLT 已提交
372 373
      idx = 0;

B
barrierye 已提交
374
      for (auto &name : fetch_name) {
B
barrierye 已提交
375
        // int idx = _fetch_name_to_idx[name];
H
HexToString 已提交
376
        if (_fetch_name_to_type[name] == P_INT64) {
M
MRXLT 已提交
377
          VLOG(2) << "ferch var " << name << "type int64";
B
barrierye 已提交
378
          int size = output.insts(0).tensor_array(idx).int64_data_size();
W
WangXi 已提交
379 380 381
          model._int64_value_map[name] = std::vector<int64_t>(
              output.insts(0).tensor_array(idx).int64_data().begin(),
              output.insts(0).tensor_array(idx).int64_data().begin() + size);
H
HexToString 已提交
382
        } else if (_fetch_name_to_type[name] == P_FLOAT32) {
B
barrierye 已提交
383
          VLOG(2) << "fetch var " << name << "type float";
B
barrierye 已提交
384
          int size = output.insts(0).tensor_array(idx).float_data_size();
W
WangXi 已提交
385 386 387
          model._float_value_map[name] = std::vector<float>(
              output.insts(0).tensor_array(idx).float_data().begin(),
              output.insts(0).tensor_array(idx).float_data().begin() + size);
H
HexToString 已提交
388
        } else if (_fetch_name_to_type[name] == P_INT32) {
M
MRXLT 已提交
389 390
          VLOG(2) << "fetch var " << name << "type int32";
          int size = output.insts(0).tensor_array(idx).int_data_size();
M
MRXLT 已提交
391 392 393
          model._int32_value_map[name] = std::vector<int32_t>(
              output.insts(0).tensor_array(idx).int_data().begin(),
              output.insts(0).tensor_array(idx).int_data().begin() + size);
M
MRXLT 已提交
394
        }
B
barrierye 已提交
395
        idx += 1;
M
MRXLT 已提交
396
      }
B
barrierye 已提交
397
      predict_res_batch.add_model_res(std::move(model));
M
MRXLT 已提交
398
    }
399
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
400 401
  }

M
MRXLT 已提交
402 403 404
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
405
        << "pid:" << pid << "\t"
M
MRXLT 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
D
dongdaxiang 已提交
423 424

  _api.thrd_clear();
M
MRXLT 已提交
425
  return 0;
M
MRXLT 已提交
426
}
G
guru4elephant 已提交
427 428 429
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu