general_model.cpp 10.6 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
G
guru4elephant 已提交
21

22 23 24
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
25
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
26 27 28 29 30 31
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

32 33
std::once_flag gflags_init_flag;

G
guru4elephant 已提交
34 35 36
namespace baidu {
namespace paddle_serving {
namespace general_model {
37
using configure::GeneralModelConfig;
G
guru4elephant 已提交
38

39 40
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
M
MRXLT 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53
    FLAGS_logtostderr = true;
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
54 55
}

56 57 58
int PredictorClient::init(const std::string &conf_file) {
  try {
    GeneralModelConfig model_config;
M
MRXLT 已提交
59
    if (configure::read_proto_conf(conf_file.c_str(), &model_config) != 0) {
60 61 62 63
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file;
      return -1;
    }
64

65 66 67 68 69
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    int fetch_var_num = model_config.fetch_var_size();
70 71
    VLOG(2) << "feed var num: " << feed_var_num
            << "fetch_var_num: " << fetch_var_num;
72 73
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
74 75
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
76
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
77 78
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
79 80
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
81
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
82 83
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
84 85 86
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
87
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
88 89
    }

90 91
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
92 93
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
94 95
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
96 97
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
98
    }
M
MRXLT 已提交
99
  } catch (std::exception &e) {
100 101
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
102
  }
103
  return 0;
G
guru4elephant 已提交
104 105
}

M
MRXLT 已提交
106 107
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
108 109 110 111
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}

112 113 114 115 116
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
}

M
MRXLT 已提交
117
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
118 119 120 121 122 123 124
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
}

G
guru4elephant 已提交
125
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
126 127
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
128 129 130 131 132 133 134
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
}

M
MRXLT 已提交
135
int PredictorClient::batch_predict(
M
MRXLT 已提交
136 137
    const std::vector<std::vector<std::vector<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
D
dongdaxiang 已提交
138
    const std::vector<std::vector<int>> &float_shape,
M
MRXLT 已提交
139 140
    const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
D
dongdaxiang 已提交
141
    const std::vector<std::vector<int>> &int_shape,
M
MRXLT 已提交
142
    const std::vector<std::string> &fetch_name,
M
MRXLT 已提交
143
    PredictorRes &predict_res_batch,
M
MRXLT 已提交
144
    const int &pid) {
M
MRXLT 已提交
145
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
M
MRXLT 已提交
146

147 148 149 150
  predict_res_batch._int64_value_map.clear();
  predict_res_batch._float_value_map.clear();
  predict_res_batch._shape_map.clear();
  predict_res_batch._lod_map.clear();
M
MRXLT 已提交
151 152 153
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

M
MRXLT 已提交
154 155 156
  int fetch_name_num = fetch_name.size();

  _api.thrd_clear();
157 158 159
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
160 161 162
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
M
MRXLT 已提交
163
  Request req;
M
MRXLT 已提交
164
  for (auto &name : fetch_name) {
165 166
    req.add_fetch_var_names(name);
  }
167

M
MRXLT 已提交
168
  for (int bi = 0; bi < batch_size; bi++) {
169
    VLOG(2) << "prepare batch " << bi;
M
MRXLT 已提交
170 171 172 173 174 175 176 177 178 179 180
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<std::vector<float>> float_feed = float_feed_batch[bi];
    std::vector<std::vector<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }
181

182
    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name"
183
            << "prepared";
M
MRXLT 已提交
184
    int vec_idx = 0;
185 186
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
M
MRXLT 已提交
187
      Tensor *tensor = tensor_vec[idx];
188 189
      for (int j = 0; j < float_shape[vec_idx].size(); ++j) {
        tensor->add_shape(float_shape[vec_idx][j]);
M
MRXLT 已提交
190 191 192
      }
      tensor->set_elem_type(1);
      for (int j = 0; j < float_feed[vec_idx].size(); ++j) {
193
        tensor->add_float_data(float_feed[vec_idx][j]);
M
MRXLT 已提交
194 195 196 197
      }
      vec_idx++;
    }

M
MRXLT 已提交
198 199
    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";
200

M
MRXLT 已提交
201
    vec_idx = 0;
202 203
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
M
MRXLT 已提交
204
      Tensor *tensor = tensor_vec[idx];
205 206
      for (int j = 0; j < int_shape[vec_idx].size(); ++j) {
        tensor->add_shape(int_shape[vec_idx][j]);
M
MRXLT 已提交
207 208
      }
      tensor->set_elem_type(0);
209
      VLOG(3) << "feed var name " << name << " index " << vec_idx
M
MRXLT 已提交
210
              << "first data " << int_feed[vec_idx][0];
M
MRXLT 已提交
211
      for (int j = 0; j < int_feed[vec_idx].size(); ++j) {
212
        tensor->add_int64_data(int_feed[vec_idx][j]);
M
MRXLT 已提交
213 214 215
      }
      vec_idx++;
    }
216

M
MRXLT 已提交
217
    VLOG(2) << "batch [" << bi << "] "
M
MRXLT 已提交
218
            << "int feed value prepared";
M
MRXLT 已提交
219 220
  }

M
MRXLT 已提交
221 222 223 224
  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

M
MRXLT 已提交
225 226
  Response res;

M
MRXLT 已提交
227 228 229 230 231 232 233 234 235 236
  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

M
MRXLT 已提交
237 238 239
  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
D
dongdaxiang 已提交
240
    return -1;
M
MRXLT 已提交
241
  } else {
M
MRXLT 已提交
242 243
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
244

M
MRXLT 已提交
245
    for (auto &name : fetch_name) {
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
      int idx = _fetch_name_to_idx[name];
      int shape_size = res.insts(0).tensor_array(idx).shape_size();
      predict_res_batch._shape_map[name].resize(shape_size);
      for (int i = 0; i < shape_size; ++i) {
        predict_res_batch._shape_map[name][i] =
            res.insts(0).tensor_array(idx).shape(i);
      }
      int lod_size = res.insts(0).tensor_array(idx).lod_size();
      if (lod_size > 0) {
        predict_res_batch._lod_map[name].resize(lod_size);
        for (int i = 0; i < lod_size; ++i) {
          predict_res_batch._lod_map[name][i] =
              res.insts(0).tensor_array(idx).lod(i);
        }
      }
M
MRXLT 已提交
261
    }
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    for (auto &name : fetch_name) {
      int idx = _fetch_name_to_idx[name];
      if (_fetch_name_to_type[name] == 0) {
        predict_res_batch._int64_value_map[name].resize(
            res.insts(0).tensor_array(idx).int64_data_size());
        int size = res.insts(0).tensor_array(idx).int64_data_size();
        for (int i = 0; i < size; ++i) {
          predict_res_batch._int64_value_map[name][i] =
              res.insts(0).tensor_array(idx).int64_data(i);
        }
      } else {
        predict_res_batch._float_value_map[name].resize(
            res.insts(0).tensor_array(idx).float_data_size());
        int size = res.insts(0).tensor_array(idx).float_data_size();
        for (int i = 0; i < size; ++i) {
          predict_res_batch._float_value_map[name][i] =
              res.insts(0).tensor_array(idx).float_data(i);
M
MRXLT 已提交
280
        }
M
MRXLT 已提交
281 282
      }
    }
M
MRXLT 已提交
283
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
284 285
  }

M
MRXLT 已提交
286 287 288
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
289
        << "pid:" << pid << "\t"
M
MRXLT 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";

    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
M
MRXLT 已提交
308
  return 0;
M
MRXLT 已提交
309 310
}

G
guru4elephant 已提交
311 312 313
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu