general_model.cpp 15.6 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
G
guru4elephant 已提交
21

22 23 24
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
25
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
26 27 28 29 30 31
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

32 33
std::once_flag gflags_init_flag;

G
guru4elephant 已提交
34 35 36
namespace baidu {
namespace paddle_serving {
namespace general_model {
37
using configure::GeneralModelConfig;
G
guru4elephant 已提交
38

39 40
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
M
MRXLT 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53
    FLAGS_logtostderr = true;
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
54 55
}

56 57 58
int PredictorClient::init(const std::string &conf_file) {
  try {
    GeneralModelConfig model_config;
M
MRXLT 已提交
59
    if (configure::read_proto_conf(conf_file.c_str(), &model_config) != 0) {
60 61 62 63
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file;
      return -1;
    }
64

65 66 67 68 69
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    int fetch_var_num = model_config.fetch_var_size();
70 71
    VLOG(2) << "feed var num: " << feed_var_num
            << "fetch_var_num: " << fetch_var_num;
72 73
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
74 75
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
76
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
77 78
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
79 80
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
81
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
82 83
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
84 85 86
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
87
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
88 89
    }

90 91
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
92 93
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
94 95
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
96 97
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
98
    }
M
MRXLT 已提交
99
  } catch (std::exception &e) {
100 101
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
102
  }
103
  return 0;
G
guru4elephant 已提交
104 105
}

M
MRXLT 已提交
106 107
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
108 109 110 111
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}

112 113 114 115 116
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
}

M
MRXLT 已提交
117
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
118 119 120 121 122 123 124
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
}

G
guru4elephant 已提交
125
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
126 127
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
128 129 130 131 132 133 134
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
}

M
MRXLT 已提交
135 136 137 138 139
int PredictorClient::predict(const std::vector<std::vector<float>> &float_feed,
                             const std::vector<std::string> &float_feed_name,
                             const std::vector<std::vector<int64_t>> &int_feed,
                             const std::vector<std::string> &int_feed_name,
                             const std::vector<std::string> &fetch_name,
M
MRXLT 已提交
140 141
                             PredictorRes &predict_res,
                             const int &pid) {  // NOLINT
B
barrierye 已提交
142
  predict_res.clear();
G
guru4elephant 已提交
143 144
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();
G
guru4elephant 已提交
145
  _api.thrd_clear();
146 147 148
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res.set_variant_tag(variant_tag);
G
guru4elephant 已提交
149

G
guru4elephant 已提交
150
  Request req;
M
MRXLT 已提交
151
  for (auto &name : fetch_name) {
152 153
    req.add_fetch_var_names(name);
  }
154

G
guru4elephant 已提交
155
  std::vector<Tensor *> tensor_vec;
M
MRXLT 已提交
156 157
  FeedInst *inst = req.add_insts();
  for (auto &name : float_feed_name) {
G
guru4elephant 已提交
158 159 160
    tensor_vec.push_back(inst->add_tensor_array());
  }

M
MRXLT 已提交
161
  for (auto &name : int_feed_name) {
G
guru4elephant 已提交
162 163 164 165
    tensor_vec.push_back(inst->add_tensor_array());
  }

  int vec_idx = 0;
M
MRXLT 已提交
166
  for (auto &name : float_feed_name) {
G
guru4elephant 已提交
167
    int idx = _feed_name_to_idx[name];
M
MRXLT 已提交
168
    Tensor *tensor = tensor_vec[idx];
G
guru4elephant 已提交
169 170 171 172 173
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(1);
    for (int j = 0; j < float_feed[vec_idx].size(); ++j) {
174
      tensor->add_float_data(float_feed[vec_idx][j]);
G
guru4elephant 已提交
175 176 177 178
    }
    vec_idx++;
  }

179
  VLOG(2) << "feed float feed var done.";
G
guru4elephant 已提交
180
  vec_idx = 0;
181

M
MRXLT 已提交
182
  for (auto &name : int_feed_name) {
G
guru4elephant 已提交
183
    int idx = _feed_name_to_idx[name];
M
MRXLT 已提交
184
    Tensor *tensor = tensor_vec[idx];
G
guru4elephant 已提交
185 186 187 188 189
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(0);
    for (int j = 0; j < int_feed[vec_idx].size(); ++j) {
190
      tensor->add_int64_data(int_feed[vec_idx][j]);
G
guru4elephant 已提交
191 192 193 194
    }
    vec_idx++;
  }

G
guru4elephant 已提交
195 196
  int64_t preprocess_end = timeline.TimeStampUS();
  int64_t client_infer_start = timeline.TimeStampUS();
G
guru4elephant 已提交
197 198
  Response res;

G
guru4elephant 已提交
199 200 201
  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;
202 203 204 205 206 207 208

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

G
guru4elephant 已提交
209 210 211
  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
212
    return -1;
G
guru4elephant 已提交
213
  } else {
214
    VLOG(2) << "predict done.";
G
guru4elephant 已提交
215 216
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
B
barrierye 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    // severaal model output
    uint32_t model_num = res.outputs_size();
    predict_res._models.resize(model_num);
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
      for (auto &name : fetch_name) {
        int idx = _fetch_name_to_idx[name];
        VLOG(2) << "fetch name: " << name;
        if (_fetch_name_to_type[name] == 0) {
          int len = output.insts(0).tensor_array(idx).int64_data_size();
          VLOG(2) << "fetch tensor : " << name << " type: int64 len : " << len;
          predict_res._models[m_idx]._int64_map[name].resize(1);
          predict_res._models[m_idx]._int64_map[name][0].resize(len);
          for (int i = 0; i < len; ++i) {
            predict_res._models[m_idx]._int64_map[name][0][i] =
                output.insts(0).tensor_array(idx).int64_data(i);
          }
        } else if (_fetch_name_to_type[name] == 1) {
          int len = output.insts(0).tensor_array(idx).float_data_size();
          VLOG(2) << "fetch tensor : " << name << " type: float32 len : " << len;
          predict_res._models[m_idx]._float_map[name].resize(1);
          predict_res._models[m_idx]._float_map[name][0].resize(len);
          for (int i = 0; i < len; ++i) {
            predict_res._models[m_idx]._float_map[name][0][i] =
                output.insts(0).tensor_array(idx).float_data(i);
          }
244
        }
G
guru4elephant 已提交
245 246
      }
    }
B
barrierye 已提交
247
    postprocess_end = timeline.TimeStampUS();
G
guru4elephant 已提交
248 249
  }

250 251 252
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
253
        << "pid:" << pid << "\t"
254 255 256 257
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
B
barrierye 已提交
258
    //TODO: multi-model
259 260 261 262 263 264 265
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }
M
MRXLT 已提交
266

267 268
    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;
M
MRXLT 已提交
269

270
    fprintf(stderr, "%s\n", oss.str().c_str());
G
guru4elephant 已提交
271
  }
272
  return 0;
G
guru4elephant 已提交
273 274
}

M
MRXLT 已提交
275
int PredictorClient::batch_predict(
M
MRXLT 已提交
276 277 278 279
    const std::vector<std::vector<std::vector<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
M
MRXLT 已提交
280
    const std::vector<std::string> &fetch_name,
M
MRXLT 已提交
281
    PredictorRes &predict_res_batch,
M
MRXLT 已提交
282
    const int &pid) {
M
MRXLT 已提交
283
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
M
MRXLT 已提交
284

B
barrierye 已提交
285
  predict_res_batch.clear();
M
MRXLT 已提交
286 287 288
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

M
MRXLT 已提交
289 290 291
  int fetch_name_num = fetch_name.size();

  _api.thrd_clear();
292 293 294
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
295 296 297
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
M
MRXLT 已提交
298
  Request req;
M
MRXLT 已提交
299
  for (auto &name : fetch_name) {
300 301
    req.add_fetch_var_names(name);
  }
B
barrierye 已提交
302
  
M
MRXLT 已提交
303
  for (int bi = 0; bi < batch_size; bi++) {
304
    VLOG(2) << "prepare batch " << bi;
M
MRXLT 已提交
305 306 307 308 309 310 311 312 313 314 315
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<std::vector<float>> float_feed = float_feed_batch[bi];
    std::vector<std::vector<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }
316

317 318
    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name"
            << "prepared";
M
MRXLT 已提交
319 320 321 322 323 324 325 326 327
    int vec_idx = 0;
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      for (int j = 0; j < _shape[idx].size(); ++j) {
        tensor->add_shape(_shape[idx][j]);
      }
      tensor->set_elem_type(1);
      for (int j = 0; j < float_feed[vec_idx].size(); ++j) {
328
        tensor->add_float_data(float_feed[vec_idx][j]);
M
MRXLT 已提交
329 330 331 332
      }
      vec_idx++;
    }

M
MRXLT 已提交
333 334
    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";
335

M
MRXLT 已提交
336 337 338 339 340 341 342 343
    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      for (int j = 0; j < _shape[idx].size(); ++j) {
        tensor->add_shape(_shape[idx][j]);
      }
      tensor->set_elem_type(0);
M
MRXLT 已提交
344 345
      VLOG(3) << "feed var name " << name << " index " << vec_idx
              << "first data " << int_feed[vec_idx][0];
M
MRXLT 已提交
346
      for (int j = 0; j < int_feed[vec_idx].size(); ++j) {
347
        tensor->add_int64_data(int_feed[vec_idx][j]);
M
MRXLT 已提交
348 349 350
      }
      vec_idx++;
    }
351

M
MRXLT 已提交
352
    VLOG(2) << "batch [" << bi << "] "
M
MRXLT 已提交
353
            << "int feed value prepared";
M
MRXLT 已提交
354 355
  }

M
MRXLT 已提交
356 357 358 359
  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

M
MRXLT 已提交
360 361
  Response res;

M
MRXLT 已提交
362 363 364 365 366 367 368 369 370 371
  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

M
MRXLT 已提交
372 373 374
  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
D
dongdaxiang 已提交
375
    return -1;
M
MRXLT 已提交
376
  } else {
M
MRXLT 已提交
377 378
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
B
barrierye 已提交
379 380 381 382 383
    uint32_t model_num = res.outputs_size();
    predict_res_batch._models.resize(model_num);
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
M
MRXLT 已提交
384
      for (auto &name : fetch_name) {
B
barrierye 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        predict_res_batch._models[m_idx]._int64_map[name].resize(batch_size);
        predict_res_batch._models[m_idx]._float_map[name].resize(batch_size);
      }
      for (int bi = 0; bi < batch_size; bi++) {
        for (auto &name : fetch_name) {
          int idx = _fetch_name_to_idx[name];
          int len = output.insts(bi).tensor_array(idx).data_size();
          if (_fetch_name_to_type[name] == 0) {
            int len = output.insts(bi).tensor_array(idx).int64_data_size();
            VLOG(2) << "fetch tensor : " << name << " type: int64 len : " << len;
            predict_res_batch._models[m_idx]._int64_map[name][bi].resize(len);
            VLOG(2) << "fetch name " << name << " index " << idx << " first data "
                    << output.insts(bi).tensor_array(idx).int64_data(0);
            for (int i = 0; i < len; ++i) {
              predict_res_batch._models[m_idx]._int64_map[name][bi][i] =
                  output.insts(bi).tensor_array(idx).int64_data(i);
            }
          } else if (_fetch_name_to_type[name] == 1) {
            int len = output.insts(bi).tensor_array(idx).float_data_size();
            VLOG(2) << "fetch tensor : " << name
                    << " type: float32 len : " << len;
            predict_res_batch._models[m_idx]._float_map[name][bi].resize(len);
            VLOG(2) << "fetch name " << name << " index " << idx << " first data "
                    << output.insts(bi).tensor_array(idx).float_data(0);
            for (int i = 0; i < len; ++i) {
              predict_res_batch._models[m_idx]._float_map[name][bi][i] =
                  output.insts(bi).tensor_array(idx).float_data(i);
            }
M
MRXLT 已提交
413 414
          }
        }
M
MRXLT 已提交
415 416
      }
    }
M
MRXLT 已提交
417
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
418 419
  }

M
MRXLT 已提交
420 421 422
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
423
        << "pid:" << pid << "\t"
M
MRXLT 已提交
424 425 426 427
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
B
barrierye 已提交
428
    //TODO: multi-models
M
MRXLT 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
M
MRXLT 已提交
442
  return 0;
M
MRXLT 已提交
443 444
}

G
guru4elephant 已提交
445 446 447
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu