benchmark.py 2.6 KB
Newer Older
M
MRXLT 已提交
1 2
# -*- coding: utf-8 -*-
#
3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
# pylint: disable=doc-string-missing
17

M
MRXLT 已提交
18 19
from __future__ import unicode_literals, absolute_import
import os
20
import sys
M
MRXLT 已提交
21
import time
22 23 24
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
M
MRXLT 已提交
25 26 27
import requests
import json
from image_reader import ImageReader
28 29 30 31 32

args = benchmark_args()


def single_func(idx, resource):
M
MRXLT 已提交
33 34 35 36 37 38
    file_list = []
    for file_name in os.listdir("./image_data/n01440764"):
        file_list.append(file_name)
    img_list = []
    for i in range(1000):
        img_list.append(open("./image_data/n01440764/" + file_list[i]).read())
39 40 41 42 43
    if args.request == "rpc":
        reader = ImageReader()
        fetch = ["score"]
        client = Client()
        client.load_client_config(args.model)
B
barrierye 已提交
44
        client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
45 46
        start = time.time()
        for i in range(1000):
M
MRXLT 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59
            if args.batch_size >= 1:
                feed_batch = []
                for bi in range(args.batch_size):
                    img = reader.process_image(img_list[i])
                    img = img.reshape(-1)
                    feed_batch.append({"image": img})
                result = client.predict(feed=feed_batch, fetch=fetch)
            else:
                print("unsupport batch size {}".format(args.batch_size))

    elif args.request == "http":
        raise ("no batch predict for http")
    end = time.time()
60 61 62
    return [[end - start]]


M
MRXLT 已提交
63
if __name__ == '__main__':
64
    multi_thread_runner = MultiThreadRunner()
M
MRXLT 已提交
65
    endpoint_list = ["127.0.0.1:9393"]
M
MRXLT 已提交
66
    #endpoint_list = endpoint_list + endpoint_list + endpoint_list
67 68
    result = multi_thread_runner.run(single_func, args.thread,
                                     {"endpoint": endpoint_list})
M
MRXLT 已提交
69
    #result = single_func(0, {"endpoint": endpoint_list})
M
MRXLT 已提交
70 71 72 73 74
    avg_cost = 0
    for i in range(args.thread):
        avg_cost += result[0][i]
    avg_cost = avg_cost / args.thread
    print("average total cost {} s.".format(avg_cost))