general_model.cpp 23.2 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
G
guru4elephant 已提交
21

22 23 24
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
25
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
26 27 28 29 30 31
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

32
std::once_flag gflags_init_flag;
M
MRXLT 已提交
33
namespace py = pybind11;
34

G
guru4elephant 已提交
35 36 37
namespace baidu {
namespace paddle_serving {
namespace general_model {
38
using configure::GeneralModelConfig;
G
guru4elephant 已提交
39

40 41
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
M
MRXLT 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    FLAGS_logtostderr = true;
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
55 56
}

57 58 59
int PredictorClient::init(const std::string &conf_file) {
  try {
    GeneralModelConfig model_config;
M
MRXLT 已提交
60
    if (configure::read_proto_conf(conf_file.c_str(), &model_config) != 0) {
61 62 63 64
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file;
      return -1;
    }
65

66 67 68 69 70
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    int fetch_var_num = model_config.fetch_var_size();
71 72
    VLOG(2) << "feed var num: " << feed_var_num
            << "fetch_var_num: " << fetch_var_num;
73 74
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
75 76
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
77
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
78 79
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
80 81
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
82
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
83 84
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
85 86 87
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
88
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
89 90
    }

91 92
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
93 94
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
95 96
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
97 98
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
99
    }
M
MRXLT 已提交
100
  } catch (std::exception &e) {
101 102
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
103
  }
104
  return 0;
G
guru4elephant 已提交
105 106
}

M
MRXLT 已提交
107 108
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
109 110 111
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}
112 113 114
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
B
barrierye 已提交
115
  return 0;
116 117
}

M
MRXLT 已提交
118
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
119 120 121 122
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
123
  // _api.thrd_initialize();
B
barrierye 已提交
124
  return 0;
G
guru4elephant 已提交
125 126
}

G
guru4elephant 已提交
127
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
128 129
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
130 131 132 133
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
134
  // _api.thrd_initialize();
B
barrierye 已提交
135
  return 0;
G
guru4elephant 已提交
136 137
}

M
MRXLT 已提交
138
int PredictorClient::batch_predict(
M
MRXLT 已提交
139 140
    const std::vector<std::vector<std::vector<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
D
dongdaxiang 已提交
141
    const std::vector<std::vector<int>> &float_shape,
M
MRXLT 已提交
142 143
    const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
D
dongdaxiang 已提交
144
    const std::vector<std::vector<int>> &int_shape,
M
MRXLT 已提交
145
    const std::vector<std::string> &fetch_name,
M
MRXLT 已提交
146
    PredictorRes &predict_res_batch,
147 148
    const int &pid,
    const uint64_t log_id) {
M
MRXLT 已提交
149
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
M
MRXLT 已提交
150

B
barrierye 已提交
151
  predict_res_batch.clear();
M
MRXLT 已提交
152 153 154
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

M
MRXLT 已提交
155 156
  int fetch_name_num = fetch_name.size();

D
dongdaxiang 已提交
157
  _api.thrd_initialize();
158 159 160
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
161 162 163
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
M
bug fix  
MRXLT 已提交
164
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
M
MRXLT 已提交
165
  Request req;
166 167
  req.set_log_id(log_id);
  VLOG(2) << "(logid=" << req.log_id() << ")";
M
MRXLT 已提交
168
  for (auto &name : fetch_name) {
169 170
    req.add_fetch_var_names(name);
  }
B
barrierye 已提交
171

M
MRXLT 已提交
172
  for (int bi = 0; bi < batch_size; bi++) {
173
    VLOG(2) << "prepare batch " << bi;
M
MRXLT 已提交
174 175 176 177 178 179 180 181 182 183 184
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<std::vector<float>> float_feed = float_feed_batch[bi];
    std::vector<std::vector<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }
185

M
bug fix  
MRXLT 已提交
186
    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name "
187
            << "prepared";
M
MRXLT 已提交
188
    int vec_idx = 0;
M
bug fix  
MRXLT 已提交
189 190
    VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape "
            << float_shape.size();
M
MRXLT 已提交
191 192 193
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
bug fix  
MRXLT 已提交
194 195
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
B
barrierye 已提交
196
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
197
        tensor->add_shape(float_shape[vec_idx][j]);
M
MRXLT 已提交
198 199
      }
      tensor->set_elem_type(1);
B
barrierye 已提交
200
      for (uint32_t j = 0; j < float_feed[vec_idx].size(); ++j) {
201
        tensor->add_float_data(float_feed[vec_idx][j]);
M
MRXLT 已提交
202 203 204 205
      }
      vec_idx++;
    }

M
MRXLT 已提交
206 207
    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";
208

M
MRXLT 已提交
209 210 211 212
    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
MRXLT 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
      if (_type[idx] == 0) {
        VLOG(2) << "prepare int64 feed " << name << " shape size "
                << int_shape[vec_idx].size();
        VLOG(3) << "feed var name " << name << " index " << vec_idx
                << "first data " << int_feed[vec_idx][0];
        for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
          tensor->add_int64_data(int_feed[vec_idx][j]);
        }
      } else if (_type[idx] == 2) {
        VLOG(2) << "prepare int32 feed " << name << " shape size "
                << int_shape[vec_idx].size();
        VLOG(3) << "feed var name " << name << " index " << vec_idx
                << "first data " << int32_t(int_feed[vec_idx][0]);
        for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
          tensor->add_int_data(int32_t(int_feed[vec_idx][j]));
        }
      }

B
barrierye 已提交
231
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
232
        tensor->add_shape(int_shape[vec_idx][j]);
M
MRXLT 已提交
233
      }
M
MRXLT 已提交
234
      tensor->set_elem_type(_type[idx]);
M
MRXLT 已提交
235 236
      vec_idx++;
    }
237

M
MRXLT 已提交
238
    VLOG(2) << "batch [" << bi << "] "
M
MRXLT 已提交
239
            << "int feed value prepared";
M
MRXLT 已提交
240 241
  }

M
MRXLT 已提交
242 243 244 245
  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

M
MRXLT 已提交
246 247
  Response res;

M
MRXLT 已提交
248 249 250 251 252 253 254 255 256 257
  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

M
MRXLT 已提交
258 259 260
  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
B
barrierye 已提交
261
    _api.thrd_clear();
D
dongdaxiang 已提交
262
    return -1;
M
MRXLT 已提交
263
  } else {
M
MRXLT 已提交
264 265
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
D
dongdaxiang 已提交
266
    VLOG(2) << "get model output num";
B
barrierye 已提交
267
    uint32_t model_num = res.outputs_size();
D
dongdaxiang 已提交
268
    VLOG(2) << "model num: " << model_num;
M
MRXLT 已提交
269 270 271 272 273 274
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
      ModelRes model;
      model.set_engine_name(output.engine_name());

M
MRXLT 已提交
275 276
      int idx = 0;

M
MRXLT 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
      for (auto &name : fetch_name) {
        // int idx = _fetch_name_to_idx[name];
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
        }
        idx += 1;
      }

M
MRXLT 已提交
297
      idx = 0;
M
MRXLT 已提交
298 299 300
      for (auto &name : fetch_name) {
        // int idx = _fetch_name_to_idx[name];
        if (_fetch_name_to_type[name] == 0) {
M
MRXLT 已提交
301
          VLOG(2) << "ferch var " << name << "type int64";
M
MRXLT 已提交
302
          int size = output.insts(0).tensor_array(idx).int64_data_size();
W
WangXi 已提交
303 304 305
          model._int64_value_map[name] = std::vector<int64_t>(
              output.insts(0).tensor_array(idx).int64_data().begin(),
              output.insts(0).tensor_array(idx).int64_data().begin() + size);
M
MRXLT 已提交
306
        } else if (_fetch_name_to_type[name] == 1) {
M
MRXLT 已提交
307 308
          VLOG(2) << "fetch var " << name << "type float";
          int size = output.insts(0).tensor_array(idx).float_data_size();
W
WangXi 已提交
309 310 311
          model._float_value_map[name] = std::vector<float>(
              output.insts(0).tensor_array(idx).float_data().begin(),
              output.insts(0).tensor_array(idx).float_data().begin() + size);
M
MRXLT 已提交
312
        } else if (_fetch_name_to_type[name] == 2) {
M
MRXLT 已提交
313 314 315 316 317
          VLOG(2) << "fetch var " << name << "type int32";
          int size = output.insts(0).tensor_array(idx).int_data_size();
          model._int32_value_map[name] = std::vector<int32_t>(
              output.insts(0).tensor_array(idx).int_data().begin(),
              output.insts(0).tensor_array(idx).int_data().begin() + size);
M
MRXLT 已提交
318
        }
M
MRXLT 已提交
319

M
MRXLT 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        idx += 1;
      }
      predict_res_batch.add_model_res(std::move(model));
    }
    postprocess_end = timeline.TimeStampUS();
  }

  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
        << "pid:" << pid << "\t"
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }

  _api.thrd_clear();
  return 0;
}

int PredictorClient::numpy_predict(
    const std::vector<std::vector<py::array_t<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int>> &float_shape,
    const std::vector<std::vector<py::array_t<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::vector<int>> &int_shape,
    const std::vector<std::string> &fetch_name,
    PredictorRes &predict_res_batch,
362 363
    const int &pid,
    const uint64_t log_id) {
M
MRXLT 已提交
364
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
D
dongdaxiang 已提交
365
  VLOG(2) << "batch size: " << batch_size;
M
MRXLT 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  predict_res_batch.clear();
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

  int fetch_name_num = fetch_name.size();

  _api.thrd_initialize();
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
  Request req;
381 382
  req.set_log_id(log_id);
  VLOG(2) << "(logid=" << req.log_id() << ")";
M
MRXLT 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
  for (auto &name : fetch_name) {
    req.add_fetch_var_names(name);
  }

  for (int bi = 0; bi < batch_size; bi++) {
    VLOG(2) << "prepare batch " << bi;
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<py::array_t<float>> float_feed = float_feed_batch[bi];
    std::vector<py::array_t<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name "
            << "prepared";

    int vec_idx = 0;
    VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape "
            << float_shape.size();
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
        tensor->add_shape(float_shape[vec_idx][j]);
      }
      tensor->set_elem_type(1);
      const int float_shape_size = float_shape[vec_idx].size();
      switch (float_shape_size) {
M
bug fix  
MRXLT 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430
        case 4: {
          auto float_array = float_feed[vec_idx].unchecked<4>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                for (ssize_t l = 0; l < float_array.shape(3); l++) {
                  tensor->add_float_data(float_array(i, j, k, l));
                }
              }
            }
          }
          break;
        }
M
MRXLT 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        case 3: {
          auto float_array = float_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                tensor->add_float_data(float_array(i, j, k));
              }
            }
          }
          break;
        }
        case 2: {
          auto float_array = float_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              tensor->add_float_data(float_array(i, j));
            }
          }
          break;
        }
M
bug fix  
MRXLT 已提交
451 452 453 454 455 456 457
        case 1: {
          auto float_array = float_feed[vec_idx].unchecked<1>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            tensor->add_float_data(float_array(i));
          }
          break;
        }
M
MRXLT 已提交
458 459 460 461 462 463 464 465 466 467 468
      }
      vec_idx++;
    }

    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";

    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
MRXLT 已提交
469

M
MRXLT 已提交
470 471 472
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
        tensor->add_shape(int_shape[vec_idx][j]);
      }
M
MRXLT 已提交
473 474 475 476 477 478 479 480 481
      tensor->set_elem_type(_type[idx]);

      if (_type[idx] == 0) {
        VLOG(2) << "prepare int feed " << name << " shape size "
                << int_shape[vec_idx].size();
      } else {
        VLOG(2) << "prepare int32 feed " << name << " shape size "
                << int_shape[vec_idx].size();
      }
M
MRXLT 已提交
482 483 484 485

      const int int_shape_size = int_shape[vec_idx].size();
      switch (int_shape_size) {
        case 4: {
M
bug fix  
MRXLT 已提交
486
          auto int_array = int_feed[vec_idx].unchecked<4>();
M
MRXLT 已提交
487 488 489 490
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
                for (ssize_t l = 0; k < int_array.shape(3); l++) {
M
MRXLT 已提交
491 492 493 494 495
                  if (_type[idx] == 0) {
                    tensor->add_int64_data(int_array(i, j, k, l));
                  } else {
                    tensor->add_int_data(int_array(i, j, k, l));
                  }
M
MRXLT 已提交
496 497 498 499 500 501 502 503 504 505 506
                }
              }
            }
          }
          break;
        }
        case 3: {
          auto int_array = int_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
M
MRXLT 已提交
507 508 509 510 511
                if (_type[idx] == 0) {
                  tensor->add_int64_data(int_array(i, j, k));
                } else {
                  tensor->add_int_data(int_array(i, j, k));
                }
M
MRXLT 已提交
512 513 514 515 516 517 518 519 520
              }
            }
          }
          break;
        }
        case 2: {
          auto int_array = int_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
M
MRXLT 已提交
521 522 523 524 525
              if (_type[idx] == 0) {
                tensor->add_int64_data(int_array(i, j));
              } else {
                tensor->add_int_data(int_array(i, j));
              }
M
MRXLT 已提交
526 527 528 529 530
            }
          }
          break;
        }
        case 1: {
M
bug fix  
MRXLT 已提交
531
          auto int_array = int_feed[vec_idx].unchecked<1>();
M
MRXLT 已提交
532
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
M
MRXLT 已提交
533 534 535 536 537
            if (_type[idx] == 0) {
              tensor->add_int64_data(int_array(i));
            } else {
              tensor->add_int_data(int_array(i));
            }
M
MRXLT 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
          }
          break;
        }
      }
      vec_idx++;
    }

    VLOG(2) << "batch [" << bi << "] "
            << "int feed value prepared";
  }

  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

  Response res;

  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    return -1;
  } else {
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
    VLOG(2) << "get model output num";
    uint32_t model_num = res.outputs_size();
    VLOG(2) << "model num: " << model_num;
B
barrierye 已提交
575 576 577
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
B
barrierye 已提交
578 579
      ModelRes model;
      model.set_engine_name(output.engine_name());
B
barrierye 已提交
580

M
MRXLT 已提交
581
      int idx = 0;
M
MRXLT 已提交
582
      for (auto &name : fetch_name) {
B
barrierye 已提交
583
        // int idx = _fetch_name_to_idx[name];
B
barrierye 已提交
584
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
B
barrierye 已提交
585 586
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
B
barrierye 已提交
587 588 589 590 591 592 593 594 595 596 597
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
598
        }
B
barrierye 已提交
599
        idx += 1;
B
barrierye 已提交
600
      }
601

M
MRXLT 已提交
602 603
      idx = 0;

B
barrierye 已提交
604
      for (auto &name : fetch_name) {
B
barrierye 已提交
605
        // int idx = _fetch_name_to_idx[name];
B
barrierye 已提交
606
        if (_fetch_name_to_type[name] == 0) {
M
MRXLT 已提交
607
          VLOG(2) << "ferch var " << name << "type int64";
B
barrierye 已提交
608
          int size = output.insts(0).tensor_array(idx).int64_data_size();
W
WangXi 已提交
609 610 611
          model._int64_value_map[name] = std::vector<int64_t>(
              output.insts(0).tensor_array(idx).int64_data().begin(),
              output.insts(0).tensor_array(idx).int64_data().begin() + size);
M
MRXLT 已提交
612
        } else if (_fetch_name_to_type[name] == 1) {
B
barrierye 已提交
613
          VLOG(2) << "fetch var " << name << "type float";
B
barrierye 已提交
614
          int size = output.insts(0).tensor_array(idx).float_data_size();
W
WangXi 已提交
615 616 617
          model._float_value_map[name] = std::vector<float>(
              output.insts(0).tensor_array(idx).float_data().begin(),
              output.insts(0).tensor_array(idx).float_data().begin() + size);
M
MRXLT 已提交
618 619 620
        } else if (_fetch_name_to_type[name] == 2) {
          VLOG(2) << "fetch var " << name << "type int32";
          int size = output.insts(0).tensor_array(idx).int_data_size();
M
MRXLT 已提交
621 622 623
          model._int32_value_map[name] = std::vector<int32_t>(
              output.insts(0).tensor_array(idx).int_data().begin(),
              output.insts(0).tensor_array(idx).int_data().begin() + size);
M
MRXLT 已提交
624
        }
B
barrierye 已提交
625
        idx += 1;
M
MRXLT 已提交
626
      }
B
barrierye 已提交
627
      predict_res_batch.add_model_res(std::move(model));
M
MRXLT 已提交
628
    }
629
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
630 631
  }

M
MRXLT 已提交
632 633 634
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
635
        << "pid:" << pid << "\t"
M
MRXLT 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
D
dongdaxiang 已提交
653 654

  _api.thrd_clear();
M
MRXLT 已提交
655
  return 0;
M
MRXLT 已提交
656
}
G
guru4elephant 已提交
657 658 659
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu