fluid_arm_engine.h 16.2 KB
Newer Older
Z
zhangjun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <pthread.h>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include "core/configure/include/configure_parser.h"
#include "core/configure/inferencer_configure.pb.h"
#include "core/predictor/framework/infer.h"
#include "paddle_inference_api.h"  // NOLINT

namespace baidu {
namespace paddle_serving {
namespace fluid_arm {

using configure::SigmoidConf;

class AutoLock {
 public:
  explicit AutoLock(pthread_mutex_t& mutex) : _mut(mutex) {
    pthread_mutex_lock(&mutex);
  }

  ~AutoLock() { pthread_mutex_unlock(&_mut); }

 private:
  pthread_mutex_t& _mut;
};

class GlobalPaddleCreateMutex {
 public:
  pthread_mutex_t& mutex() { return _mut; }

  static pthread_mutex_t& instance() {
    static GlobalPaddleCreateMutex gmutex;
    return gmutex.mutex();
  }

 private:
  GlobalPaddleCreateMutex() { pthread_mutex_init(&_mut, NULL); }

  pthread_mutex_t _mut;
};

class GlobalSigmoidCreateMutex {
 public:
  pthread_mutex_t& mutex() { return _mut; }
  static pthread_mutex_t& instance() {
    static GlobalSigmoidCreateMutex gmutex;
    return gmutex.mutex();
  }

 private:
  GlobalSigmoidCreateMutex() { pthread_mutex_init(&_mut, NULL); }

  pthread_mutex_t _mut;
};

// data interface
class FluidFamilyCore {
 public:
  virtual ~FluidFamilyCore() {}
  virtual bool Run(const void* in_data, void* out_data) {
    if (!_core->Run(*(std::vector<paddle::PaddleTensor>*)in_data,
                    (std::vector<paddle::PaddleTensor>*)out_data)) {
      LOG(ERROR) << "Failed call Run with paddle predictor";
      return false;
    }

    return true;
  }

  virtual int create(const predictor::InferEngineCreationParams& params) = 0;

  virtual int clone(void* origin_core) {
    if (origin_core == NULL) {
      LOG(ERROR) << "origin paddle Predictor is null.";
      return -1;
    }
    paddle::PaddlePredictor* p_predictor =
        (paddle::PaddlePredictor*)origin_core;
    _core = p_predictor->Clone();
    if (_core.get() == NULL) {
      LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
      return -1;
    }
    return 0;
  }

  virtual void* get() { return _core.get(); }

 protected:
  std::unique_ptr<paddle::PaddlePredictor> _core;
};

// infer interface
class FluidArmAnalysisCore : public FluidFamilyCore {
 public:
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::AnalysisConfig analysis_config;
    analysis_config.SetParamsFile(data_path + "/__params__");
    analysis_config.SetProgFile(data_path + "/__model__");
    analysis_config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32, true);
    analysis_config.SetCpuMathLibraryNumThreads(1);

    if (params.enable_memory_optimization()) {
      analysis_config.EnableMemoryOptim();
    }

Z
zhangjun 已提交
132
    if (params.use_lite()) {
Z
zhangjun 已提交
133 134 135
      analysis_config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32, true);
    }

Z
zhangjun 已提交
136
    if (params.use_xpu()) {
Z
zhangjun 已提交
137 138 139 140 141 142 143 144 145 146 147 148
      analysis_config.EnableXpu(100);
    }

    analysis_config.SwitchSpecifyInputNames(true);
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

Z
zhangjun 已提交
149 150
    VLOG(2) << "[FluidArmAnalysisCore] create paddle predictor sucess, path: " << data_path;
    params.dump();
Z
zhangjun 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    return 0;
  }
};

class FluidArmNativeCore : public FluidFamilyCore {
 public:
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.param_file = data_path + "/__params__";
    native_config.prog_file = data_path + "/__model__";
    native_config.use_gpu = false;
    native_config.device = 0;
    native_config.fraction_of_gpu_memory = 0;

    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                          paddle::PaddleEngineKind::kNative>(
        native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

Z
zhangjun 已提交
181 182
    VLOG(2) << "[FluidArmNativeCore] create paddle predictor sucess, path: " << data_path;
    params.dump();
Z
zhangjun 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    return 0;
  }
};

class FluidArmAnalysisDirCore : public FluidFamilyCore {
 public:
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::AnalysisConfig analysis_config;
    analysis_config.SetModel(data_path);
    analysis_config.DisableGpu();
    analysis_config.SwitchSpecifyInputNames(true);
    analysis_config.SetCpuMathLibraryNumThreads(1);

    if (params.enable_memory_optimization()) {
      analysis_config.EnableMemoryOptim();
    }

    if (params.enable_ir_optimization()) {
      analysis_config.SwitchIrOptim(true);
    } else {
      analysis_config.SwitchIrOptim(false);
    }

Z
zhangjun 已提交
213 214 215 216 217 218 219 220
    if (params.use_lite()) {
      analysis_config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32, true);
    }

    if (params.use_xpu()) {
      analysis_config.EnableXpu(100);
    }

Z
zhangjun 已提交
221 222 223 224 225 226 227 228
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

Z
zhangjun 已提交
229 230
    VLOG(2) << "[FluidArmAnalysisDirCore] create paddle predictor sucess, path: " << data_path;
    params.dump();
Z
zhangjun 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    return 0;
  }
};

class FluidArmNativeDirCore : public FluidFamilyCore {
 public:
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.model_dir = data_path;
    native_config.use_gpu = false;
    native_config.device = 0;
Z
zhangjun 已提交
249
    native_config.fraction_of_gpu_memory = 0;
Z
zhangjun 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                          paddle::PaddleEngineKind::kNative>(
        native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    VLOG(2) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

class Parameter {
 public:
  Parameter() : _row(0), _col(0), _params(NULL) {}
  ~Parameter() {
    VLOG(2) << "before destroy Parameter, file_name[" << _file_name << "]";
    destroy();
  }

  int init(int row, int col, const char* file_name) {
    destroy();
    _file_name = file_name;
    _row = row;
    _col = col;
    _params = reinterpret_cast<float*>(malloc(_row * _col * sizeof(float)));
    if (_params == NULL) {
      LOG(ERROR) << "Load " << _file_name << " malloc error.";
      return -1;
    }
    VLOG(2) << "Load parameter file[" << _file_name << "] success.";
    return 0;
  }

  void destroy() {
    _row = 0;
    _col = 0;
    if (_params != NULL) {
      free(_params);
      _params = NULL;
    }
  }

  int load() {
    if (_params == NULL || _row <= 0 || _col <= 0) {
      LOG(ERROR) << "load parameter error [not inited].";
      return -1;
    }

    FILE* fs = fopen(_file_name.c_str(), "rb");
    if (fs == NULL) {
      LOG(ERROR) << "load " << _file_name << " fopen error.";
      return -1;
    }
    static const uint32_t MODEL_FILE_HEAD_LEN = 16;
    char head[MODEL_FILE_HEAD_LEN] = {0};
    if (fread(head, 1, MODEL_FILE_HEAD_LEN, fs) != MODEL_FILE_HEAD_LEN) {
      destroy();
      LOG(ERROR) << "Load " << _file_name << " read head error.";
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
    }

    uint32_t matrix_size = _row * _col;
    if (matrix_size == fread(_params, sizeof(float), matrix_size, fs)) {
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      VLOG(2) << "load " << _file_name << " read ok.";
      return 0;
    } else {
      LOG(ERROR) << "load " << _file_name << " read error.";
      destroy();
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
    }
    return 0;
  }

 public:
  std::string _file_name;
  int _row;
  int _col;
  float* _params;
};

class SigmoidModel {
 public:
  ~SigmoidModel() {}
  int load(const char* sigmoid_w_file,
           const char* sigmoid_b_file,
           float exp_max,
           float exp_min) {
    AutoLock lock(GlobalSigmoidCreateMutex::instance());
    if (0 != _sigmoid_w.init(2, 1, sigmoid_w_file) || 0 != _sigmoid_w.load()) {
      LOG(ERROR) << "load params sigmoid_w failed.";
      return -1;
    }
    VLOG(2) << "load sigmoid_w [" << _sigmoid_w._params[0] << "] ["
            << _sigmoid_w._params[1] << "].";
    if (0 != _sigmoid_b.init(2, 1, sigmoid_b_file) || 0 != _sigmoid_b.load()) {
      LOG(ERROR) << "load params sigmoid_b failed.";
      return -1;
    }
    VLOG(2) << "load sigmoid_b [" << _sigmoid_b._params[0] << "] ["
            << _sigmoid_b._params[1] << "].";
    _exp_max_input = exp_max;
    _exp_min_input = exp_min;
    return 0;
  }

  int softmax(float x, double& o) {  // NOLINT
    float _y0 = x * _sigmoid_w._params[0] + _sigmoid_b._params[0];
    float _y1 = x * _sigmoid_w._params[1] + _sigmoid_b._params[1];
    _y0 = (_y0 > _exp_max_input)
              ? _exp_max_input
              : ((_y0 < _exp_min_input) ? _exp_min_input : _y0);
    _y1 = (_y1 > _exp_max_input)
              ? _exp_max_input
              : ((_y1 < _exp_min_input) ? _exp_min_input : _y1);
    o = 1.0f / (1.0f + exp(_y0 - _y1));
    return 0;
  }

 public:
  Parameter _sigmoid_w;
  Parameter _sigmoid_b;
  float _exp_max_input;
  float _exp_min_input;
};

class SigmoidFluidModel {
 public:
  int softmax(float x, double& o) {  // NOLINT
    return _sigmoid_core->softmax(x, o);
  }  // NOLINT

  std::unique_ptr<SigmoidFluidModel> Clone() {
    std::unique_ptr<SigmoidFluidModel> clone_model;
    clone_model.reset(new SigmoidFluidModel());
    clone_model->_sigmoid_core = _sigmoid_core;
    clone_model->_fluid_core = _fluid_core->Clone();
    return std::move(clone_model);  // NOLINT
  }

 public:
  std::unique_ptr<paddle::PaddlePredictor> _fluid_core;
  std::shared_ptr<SigmoidModel> _sigmoid_core;
};

class FluidArmWithSigmoidCore : public FluidFamilyCore {
 public:
  virtual ~FluidArmWithSigmoidCore() {}

 public:
  int create(const predictor::InferEngineCreationParams& params) {
    std::string model_path = params.get_path();
    size_t pos = model_path.find_last_of("/\\");
    std::string conf_path = model_path.substr(0, pos);
    std::string conf_file = model_path.substr(pos);
    configure::SigmoidConf conf;
    if (configure::read_proto_conf(conf_path, conf_file, &conf) != 0) {
      LOG(ERROR) << "failed load model path: " << model_path;
      return -1;
    }

    _core.reset(new SigmoidFluidModel);

    std::string fluid_model_data_path = conf.dnn_model_path();
    predictor::InferEngineCreationParams new_params(params);
    new_params.set_path(fluid_model_data_path);
    int ret = load_fluid_model(new_params);
    if (ret < 0) {
      LOG(ERROR) << "fail to load fluid model.";
      return -1;
    }
    const char* sigmoid_w_file = conf.sigmoid_w_file().c_str();
    const char* sigmoid_b_file = conf.sigmoid_b_file().c_str();
    float exp_max = conf.exp_max_input();
    float exp_min = conf.exp_min_input();
    _core->_sigmoid_core.reset(new SigmoidModel);
    VLOG(2) << "create sigmoid core[" << _core->_sigmoid_core.get()
            << "], use count[" << _core->_sigmoid_core.use_count() << "].";
    ret = _core->_sigmoid_core->load(
        sigmoid_w_file, sigmoid_b_file, exp_max, exp_min);
    if (ret < 0) {
      LOG(ERROR) << "fail to load sigmoid model.";
      return -1;
    }
    return 0;
  }

  virtual bool Run(const void* in_data, void* out_data) {
    if (!_core->_fluid_core->Run(
            *(std::vector<paddle::PaddleTensor>*)in_data,
            (std::vector<paddle::PaddleTensor>*)out_data)) {
      LOG(ERROR) << "Failed call Run with paddle predictor";
      return false;
    }

    return true;
  }

  virtual int clone(SigmoidFluidModel* origin_core) {
    if (origin_core == NULL) {
      LOG(ERROR) << "origin paddle Predictor is null.";
      return -1;
    }
    _core = origin_core->Clone();
    if (_core.get() == NULL) {
      LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
      return -1;
    }
    VLOG(2) << "clone sigmoid core[" << _core->_sigmoid_core.get()
            << "] use count[" << _core->_sigmoid_core.use_count() << "].";
    return 0;
  }

  virtual SigmoidFluidModel* get() { return _core.get(); }

  virtual int load_fluid_model(
      const predictor::InferEngineCreationParams& params) = 0;

  int softmax(float x, double& o) {  // NOLINT
    return _core->_sigmoid_core->softmax(x, o);
  }

 protected:
  std::unique_ptr<SigmoidFluidModel> _core;  // NOLINT
};

class FluidArmNativeDirWithSigmoidCore : public FluidArmWithSigmoidCore {
 public:
  int load_fluid_model(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.model_dir = data_path;
    native_config.use_gpu = false;
    native_config.device = 0;
Z
zhangjun 已提交
504
    native_config.fraction_of_gpu_memory = 0;
Z
zhangjun 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core->_fluid_core =
        paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                      paddle::PaddleEngineKind::kNative>(
            native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    VLOG(2) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

class FluidArmAnalysisDirWithSigmoidCore : public FluidArmWithSigmoidCore {
 public:
  int load_fluid_model(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::AnalysisConfig analysis_config;
    analysis_config.SetModel(data_path);
    analysis_config.DisableGpu();
    analysis_config.SwitchSpecifyInputNames(true);
    analysis_config.SetCpuMathLibraryNumThreads(1);

    if (params.enable_memory_optimization()) {
      analysis_config.EnableMemoryOptim();
    }

    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core->_fluid_core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    VLOG(2) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

}  // namespace fluid_arm
}  // namespace paddle_serving
}  // namespace baidu