HOT_LOADING_IN_SERVING_CN.md 9.2 KB
Newer Older
B
barrierye 已提交
1 2 3 4
# Paddle Serving中的模型热加载

## 背景

B
barrierye 已提交
5
在实际的工业场景下,通常是远端定期不间断产出模型,线上服务端需要在服务不中断的情况下拉取新模型对旧模型进行更新迭代。
B
barrierye 已提交
6

B
barrierye 已提交
7 8 9 10 11
## Server Monitor

Paddle Serving提供了一个自动监控脚本,远端地址更新模型后会拉取新模型更新本地模型,同时更新本地模型文件夹中的时间戳文件`fluid_time_stamp`实现热加载。

目前支持下面几种类型的远端监控Monitor:
B
barrierye 已提交
12

B
barrierye 已提交
13 14
| Monitor类型 |                             描述                             |                           特殊选项                           |
| :---------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
B
barrierye 已提交
15
|   General   | 远端无认证,可以通过`wget`直接访问下载文件(如无需认证的FTP,BOS等) |                 `general_host` 通用远端host                  |
B
barrierye 已提交
16
|    HDFS     |            远端为HDFS,通过HDFS二进制执行相关命令            |                 `hdfs_bin` HDFS二进制的路径                  |
B
barrierye 已提交
17
|     FTP     | 远端为FTP,通过`ftplib`进行相关访问(使用该Monitor,您可能需要执行`pip install ftplib`下载`ftplib`) | `ftp_host` FTP host<br>`ftp_port` FTP port<br>`ftp_username` FTP username,默认为空<br>`ftp_password` FTP password,默认为空 |
B
barrierye 已提交
18
|     AFS     |           远端为AFS,通过Hadoop-client执行相关命令           | `hadoop_bin` Hadoop二进制的路径<br>`hadoop_host` AFS host,默认为空<br>`hadoop_ugi` AFS ugi,默认为空 |
B
barrierye 已提交
19

B
barrierye 已提交
20 21 22 23 24 25 26 27 28 29 30 31
|    Monitor通用选项     |                             描述                             |         默认值         |
| :--------------------: | :----------------------------------------------------------: | :--------------------: |
|         `type`         |                       指定Monitor类型                        |           无           |
|     `remote_path`      |                      指定远端的基础路径                      |           无           |
|  `remote_model_name`   |                   指定远端需要拉取的模型名                   |           无           |
| `remote_donefile_name` |           指定远端标志模型更新完毕的donefile文件名           |           无           |
|      `local_path`      |                       指定本地工作路径                       |           无           |
|   `local_model_name`   |                        指定本地模型名                        |           无           |
| `local_timestamp_file` | 指定本地用于热加载的时间戳文件,该文件被认为在`local_path/local_model_name`下。 |   `fluid_time_file`    |
|    `local_tmp_path`    |    指定本地存放临时文件的文件夹路径,若不存在则自动创建。    | `_serving_monitor_tmp` |
|       `interval`       |                 指定轮询间隔时间,单位为秒。                 |          `10`          |
|  `unpacked_filename`   | Monitor支持tarfile打包的远程模型。如果远程模型是打包格式,则需要设置该选项来告知Monitor解压后的文件名。 |         `None`         |
B
barrierye 已提交
32

B
barrierye 已提交
33
下面通过HDFSMonitor示例来展示Paddle Serving的模型热加载功能。
B
barrierye 已提交
34

B
barrierye 已提交
35
## HDFSMonitor示例
B
barrierye 已提交
36

B
barrierye 已提交
37
示例中在`product_path`中生产模型上传至hdfs,在`server_path`中模拟服务端模型热加载:
B
barrierye 已提交
38 39

```shell
B
barrierye 已提交
40
.
B
barrierye 已提交
41 42
├── product_path
└── server_path
B
barrierye 已提交
43 44
```

B
barrierye 已提交
45
### 生产模型
B
barrierye 已提交
46

B
barrierye 已提交
47
`product_path`下运行下面的Python代码生产模型,每隔 60 秒会产出 Boston 房价预测模型的打包文件`uci_housing.tar.gz`并上传至hdfs的`/`路径下,上传完毕后更新时间戳文件`donefile`并上传至hdfs的`/`路径下。
B
barrierye 已提交
48 49 50

```python
import os
B
barrierye 已提交
51
import sys
B
barrierye 已提交
52
import time
B
barrierye 已提交
53
import tarfile
B
barrierye 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
import paddle
import paddle.fluid as fluid
import paddle_serving_client.io as serving_io

train_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.uci_housing.train(), buf_size=500),
    batch_size=16)

test_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.uci_housing.test(), buf_size=500),
    batch_size=16)

x = fluid.data(name='x', shape=[None, 13], dtype='float32')
y = fluid.data(name='y', shape=[None, 1], dtype='float32')

y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(avg_loss)

place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

B
barrierye 已提交
82
def push_to_hdfs(local_file_path, remote_path):
B
barrierye 已提交
83
    hdfs_bin = '/hadoop-3.1.2/bin/hdfs'
B
barrierye 已提交
84 85 86
    os.system('{} dfs -put -f {} {}'.format(
      hdfs_bin, local_file_path, remote_path))

B
barrierye 已提交
87
name = "uci_housing"
B
barrierye 已提交
88 89 90 91 92
for pass_id in range(30):
    for data_train in train_reader():
        avg_loss_value, = exe.run(fluid.default_main_program(),
                                  feed=feeder.feed(data_train),
                                  fetch_list=[avg_loss])
B
barrierye 已提交
93 94 95 96 97
    # Simulate the production model every other period of time
    time.sleep(60)
    model_name = "{}_model".format(name)
    client_name = "{}_client".format(name)
    serving_io.save_model(model_name, client_name,
B
barrierye 已提交
98 99
                          {"x": x}, {"price": y_predict},
                          fluid.default_main_program())
B
barrierye 已提交
100
    # Packing model
B
barrierye 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114
    tar_name = "{}.tar.gz".format(name)
    tar = tarfile.open(tar_name, 'w:gz')
    tar.add(model_name)
    tar.close()

    # Push packaged model file to hdfs
    push_to_hdfs(tar_name, '/')

    # Generate donefile
    donefile_name = 'donefile'
    os.system('touch {}'.format(donefile_name))

    # Push donefile to hdfs
    push_to_hdfs(donefile_name, '/')
B
barrierye 已提交
115 116
```

B
barrierye 已提交
117
hdfs上的文件如下列所示:
B
barrierye 已提交
118

B
barrierye 已提交
119 120 121
```bash
# hdfs dfs -ls /
Found 2 items
B
barrierye 已提交
122 123
-rw-r--r--   1 root supergroup          0 2020-04-02 02:54 /donefile
-rw-r--r--   1 root supergroup       2101 2020-04-02 02:54 /uci_housing.tar.gz
B
barrierye 已提交
124 125
```

B
barrierye 已提交
126
### 服务端加载模型
B
barrierye 已提交
127

B
barrierye 已提交
128
进入`server_path`文件夹。
B
barrierye 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

#### 用初始模型启动Server端

这里使用预训练的 Boston 房价预测模型作为初始模型:

```shell
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

启动Server端:

```shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292
```

#### 执行监控程序

B
barrierye 已提交
147
用下面的命令来执行HDFS监控程序:
B
barrierye 已提交
148 149

```shell
B
barrierye 已提交
150
python -m paddle_serving_server.monitor \
B
barrierye 已提交
151
--type='hdfs' --hdfs_bin='/hadoop-3.1.2/bin/hdfs' --remote_path='/' \
B
barrierye 已提交
152
--remote_model_name='uci_housing.tar.gz' --remote_donefile_name='donefile' \
B
barrierye 已提交
153
--local_path='.' --local_model_name='uci_housing_model' \
B
barrierye 已提交
154 155
--local_timestamp_file='fluid_time_file' --local_tmp_path='_tmp' \
--unpacked_filename='uci_housing_model'
B
barrierye 已提交
156 157
```

B
barrierye 已提交
158
上面代码通过轮询方式监控远程HDFS地址`/`的时间戳文件`/donefile`,当时间戳变更则认为远程模型已经更新,将远程打包模型`/uci_housing.tar.gz`拉取到本地临时路径`./_tmp/uci_housing.tar.gz`下,解包出模型文件`./_tmp/uci_housing_model`后,更新本地模型`./uci_housing_model`以及Paddle Serving的时间戳文件`./uci_housing_model/fluid_time_file`
B
barrierye 已提交
159 160 161 162 163 164 165 166 167 168 169 170

#### 查看Server日志

通过下面命令查看Server的运行日志:

```shell
tail -f log/serving.INFO
```

日志中显示模型已经被热加载:

```shell
B
barrierye 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
I0330 09:38:40.087316  7361 server.cpp:150] Begin reload framework...
W0330 09:38:40.087399  7361 infer.h:656] Succ reload version engine: 18446744073709551615
I0330 09:38:40.087414  7361 manager.h:131] Finish reload 1 workflow(s)
I0330 09:38:50.087535  7361 server.cpp:150] Begin reload framework...
W0330 09:38:50.087641  7361 infer.h:250] begin reload model[uci_housing_model].
I0330 09:38:50.087972  7361 infer.h:66] InferEngineCreationParams: model_path = uci_housing_model, enable_memory_optimization = 0, static_optimization = 0, force_update_static_cache = 0
I0330 09:38:50.088027  7361 analysis_predictor.cc:88] Profiler is deactivated, and no profiling report will be generated.
I0330 09:38:50.088393  7361 analysis_predictor.cc:841] MODEL VERSION: 1.7.1
I0330 09:38:50.088413  7361 analysis_predictor.cc:843] PREDICTOR VERSION: 1.6.3
I0330 09:38:50.089519  7361 graph_pattern_detector.cc:96] ---  detected 1 subgraphs
I0330 09:38:50.090925  7361 analysis_predictor.cc:470] ======= optimize end =======
W0330 09:38:50.090986  7361 infer.h:472] Succ load common model[0x7fc83c06abd0], path[uci_housing_model].
I0330 09:38:50.091022  7361 analysis_predictor.cc:88] Profiler is deactivated, and no profiling report will be generated.
W0330 09:38:50.091050  7361 infer.h:509] td_core[0x7fc83c0ad770] clone model from pd_core[0x7fc83c06abd0] succ, cur_idx[0].
...
W0330 09:38:50.091784  7361 infer.h:489] Succ load clone model, path[uci_housing_model]
W0330 09:38:50.091794  7361 infer.h:656] Succ reload version engine: 18446744073709551615
I0330 09:38:50.091820  7361 manager.h:131] Finish reload 1 workflow(s)
I0330 09:39:00.091987  7361 server.cpp:150] Begin reload framework...
W0330 09:39:00.092161  7361 infer.h:656] Succ reload version engine: 18446744073709551615
I0330 09:39:00.092177  7361 manager.h:131] Finish reload 1 workflow(s)
B
barrierye 已提交
192
```