Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
f4f6a0c8
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f4f6a0c8
编写于
3月 27, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add HOT_LOADING_IN_SERVING_CN doc
上级
5f2fede2
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
193 addition
and
0 deletion
+193
-0
doc/HOT_LOADING_IN_SERVING_CN.md
doc/HOT_LOADING_IN_SERVING_CN.md
+193
-0
未找到文件。
doc/HOT_LOADING_IN_SERVING_CN.md
0 → 100644
浏览文件 @
f4f6a0c8
# Paddle Serving中的模型热加载
## 背景
在实际的工业场景下,通常是定期不间断产出模型,服务端需要在服务不中断的情况下按时更新迭代模型。
这里用本地搭建FTP的形式,模拟监控远程模型,拉取更新本地模型,来展示Paddle Serving的模型热加载功能。
## 示例
示例目录结构,示例中用
`local_path`
来模拟本地,用
`remote_path`
来模拟远程:
```
shell
.
├── local_path
└── remote_path
```
### 远程部分
进入
`remote_path`
文件夹:
```
shell
cd
remote_path
```
#### 生产远程模型
运行下面的Python代码生产模型。
```
python
import
os
import
time
import
paddle
import
paddle.fluid
as
fluid
import
paddle_serving_client.io
as
serving_io
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
uci_housing
.
train
(),
buf_size
=
500
),
batch_size
=
16
)
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
uci_housing
.
test
(),
buf_size
=
500
),
batch_size
=
16
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
None
,
13
],
dtype
=
'float32'
)
y
=
fluid
.
data
(
name
=
'y'
,
shape
=
[
None
,
1
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1
,
act
=
None
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_loss
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd_optimizer
.
minimize
(
avg_loss
)
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
x
,
y
])
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
range
(
30
):
for
data_train
in
train_reader
():
avg_loss_value
,
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data_train
),
fetch_list
=
[
avg_loss
])
time
.
sleep
(
60
)
# Simulate the production model every other period of time
serving_io
.
save_model
(
"uci_housing_model"
,
"uci_housing_client"
,
{
"x"
:
x
},
{
"price"
:
y_predict
},
fluid
.
default_main_program
())
os
.
system
(
'touch donefile'
)
print
(
'save {}'
.
format
(
pass_id
))
```
上面的代码会每隔 60 秒在当前目录下产出 Boston 房价预测模型
`uci_housing_model`
,并在每次产出后更新时间戳文件
`donefile`
:
```
shell
.
├── donefile
# timestamp file
├── local_train.py
├── uci_housing_client
└── uci_housing_model
# output model
```
#### 启动FTP服务
这里使用
`pyftpdlib`
开启FTP服务,执行下面的命令(您可能需要使用
`pip install pyftpdlib `
来安装相关的库):
```
shell
python
-m
pyftpdlib
-p
8080
```
### 本地部分
进入
`local_path`
文件夹:
```
shell
cd
local_path
```
#### 用初始模型启动Server端
这里使用预训练的 Boston 房价预测模型作为初始模型:
```
shell
wget
--no-check-certificate
https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar
-xzf
uci_housing.tar.gz
```
启动Server端:
```
shell
python
-m
paddle_serving_server.serve
--model
uci_housing_model
--thread
10
--port
9292
```
#### 执行监控程序
用下面的命令来执行监控程序,通过轮询方式监控远程地址的时间戳文件
`donefile`
,当时间戳变更则认为远程模型已经更新,将远程模型拉取到本地临时路径下(默认为
`./tmp`
),更新本地模型以及Paddle Serving的时间戳文件
`fluid_time_file`
:
```
shell
python
-m
paddle_serving_server.monitor
--type
=
'ftp'
--ftp_ip
=
'127.0.0.1'
--ftp_port
=
'8080'
--remote_path
=
'/'
--remote_model_name
=
'uci_housing_model'
--remote_donefile_name
=
'donefile'
--local_path
=
'./'
--local_model_name
=
'uci_housing_model'
--local_donefile_name
=
'fluid_time_file'
--local_tmp_dir
=
'tmp'
```
上面的代码会监控远程路径
`ftp://127.0.0.1:8080/`
下的
`donefile`
文件来判断远程模型是否更新,若已经更新则将远程模型
`ftp://127.0.0.1:8080/uci_housing_model`
拉取到本地
`./tmp`
路径下,之后更新本地路径的模型
`./uci_housing_model`
,并更新Paddle Serving的时间戳文件
`./uci_housing_model/fluid_time_file`
。
#### 查看Server日志
通过下面命令查看Server的运行日志:
```
shell
tail
-f
log/serving.INFO
```
日志中显示模型已经被热加载:
```
shell
W0327 19:00:38.498729 5559 infer.h:509] td_core[0x7f20e8068f10] clone model from pd_core[0x7f20e8005f90] succ, cur_idx[1].
W0327 19:00:38.498737 5559 infer.h:489] Succ load clone model, path[uci_housing_model]
W0327 19:00:38.498744 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:00:38.498752 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:00:48.498860 5559 server.cpp:150] Begin reload framework...
W0327 19:00:48.498947 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:00:48.498970 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:00:58.499076 5559 server.cpp:150] Begin reload framework...
W0327 19:00:58.499167 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:00:58.499181 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:01:08.499277 5559 server.cpp:150] Begin reload framework...
W0327 19:01:08.499366 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:01:08.499379 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:01:18.499492 5559 server.cpp:150] Begin reload framework...
W0327 19:01:18.499637 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:01:18.499655 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:01:28.499745 5559 server.cpp:150] Begin reload framework...
W0327 19:01:28.499814 5559 infer.h:250] begin reload model[uci_housing_model].
I0327 19:01:28.500083 5559 infer.h:66] InferEngineCreationParams: model_path
=
uci_housing_model, enable_memory_optimization
=
0, static_optimization
=
0, force_update_static_cache
=
0
I0327 19:01:28.500160 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.500176 5559 init.cc:159] AVX is available, Please re-compile on
local
machine
I0327 19:01:28.500628 5559 analysis_predictor.cc:833] MODEL VERSION: 0.0.0
I0327 19:01:28.500653 5559 analysis_predictor.cc:835] PREDICTOR VERSION: 1.7.1
I0327 19:01:28.502399 5559 graph_pattern_detector.cc:101]
---
detected 1 subgraphs
I0327 19:01:28.504007 5559 analysis_predictor.cc:462]
=======
optimize end
=======
W0327 19:01:28.504101 5559 infer.h:472] Succ load common model[0x7f20e806b8b0], path[uci_housing_model].
I0327 19:01:28.504154 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504194 5559 infer.h:509] td_core[0x7f20e80b9680] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504287 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504330 5559 infer.h:509] td_core[0x7f20e80bf1e0] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504365 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504403 5559 infer.h:509] td_core[0x7f20e80af2a0] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504436 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504483 5559 infer.h:509] td_core[0x7f20e8004a00] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504516 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504551 5559 infer.h:509] td_core[0x7f20e80a8960] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504580 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504611 5559 infer.h:509] td_core[0x7f20e80a4bd0] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504639 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504669 5559 infer.h:509] td_core[0x7f20e80b8f20] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504699 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504730 5559 infer.h:509] td_core[0x7f20e80a4ab0] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504760 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504796 5559 infer.h:509] td_core[0x7f20e807ee40] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.504827 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.504904 5559 infer.h:509] td_core[0x7f20e8085900] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
I0327 19:01:28.505043 5559 analysis_predictor.cc:84] Profiler is deactivated, and no profiling report will be generated.
W0327 19:01:28.505097 5559 infer.h:509] td_core[0x7f20e8088500] clone model from pd_core[0x7f20e806b8b0] succ, cur_idx[0].
W0327 19:01:28.505110 5559 infer.h:489] Succ load clone model, path[uci_housing_model]
W0327 19:01:28.505120 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:01:28.505131 5559 manager.h:131] Finish reload 1 workflow
(
s
)
I0327 19:01:38.505468 5559 server.cpp:150] Begin reload framework...
W0327 19:01:38.505568 5559 infer.h:656] Succ reload version engine: 18446744073709551615
I0327 19:01:38.505584 5559 manager.h:131] Finish reload 1 workflow
(
s
)
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录