image_reader.py 17.8 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
15
import os
16
import urllib
M
MRXLT 已提交
17
import numpy as np
18
import base64
M
MRXLT 已提交
19
from . import functional as F
20 21
from PIL import Image, ImageDraw
import json
22

23
_cv2_interpolation_to_str = {cv2.INTER_LINEAR: "cv2.INTER_LINEAR", None: "None"}
24 25


26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def generate_colormap(num_classes):
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


class SegPostprocess(object):
    def __init__(self, class_num):
        self.class_num = class_num

    def __call__(self, image_with_result):
        if "filename" not in image_with_result:
            raise ("filename should be specified in postprocess")
        img_name = image_with_result["filename"]
        ori_img = cv2.imread(img_name, -1)
        ori_shape = ori_img.shape
        mask = None
        for key in image_with_result:
            if ".lod" in key or "filename" in key:
                continue
            mask = image_with_result[key]
        if mask is None:
            raise ("segment mask should be specified in postprocess")
        mask = mask.astype("uint8")
        mask_png = mask.reshape((512, 512, 1))
        #score_png = mask_png[:, :, np.newaxis]
        score_png = mask_png
        score_png = np.concatenate([score_png] * 3, axis=2)
        color_map = generate_colormap(self.class_num)
        for i in range(score_png.shape[0]):
            for j in range(score_png.shape[1]):
                score_png[i, j] = color_map[score_png[i, j, 0]]
        ext_pos = img_name.rfind(".")
        img_name_fix = img_name[:ext_pos] + "_" + img_name[ext_pos + 1:]
        mask_save_name = img_name_fix + "_mask.png"
        cv2.imwrite(mask_save_name, mask_png, [cv2.CV_8UC1])
        vis_result_name = img_name_fix + "_result.png"
        result_png = score_png

        result_png = cv2.resize(
            result_png,
            ori_shape[:2],
            fx=0,
            fy=0,
            interpolation=cv2.INTER_CUBIC)
        cv2.imwrite(vis_result_name, result_png, [cv2.CV_8UC1])


83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
class RCNNPostprocess(object):
    def __init__(self, label_file, output_dir):
        self.output_dir = output_dir
        self.label_file = label_file
        self.label_list = []
        with open(label_file) as fin:
            for line in fin:
                self.label_list.append(line.strip())
        self.clsid2catid = {i: i for i in range(len(self.label_list))}
        self.catid2name = {i: name for i, name in enumerate(self.label_list)}

    def _offset_to_lengths(self, lod):
        offset = lod[0]
        lengths = [offset[i + 1] - offset[i] for i in range(len(offset) - 1)]
        return [lengths]

    def _bbox2out(self, results, clsid2catid, is_bbox_normalized=False):
        xywh_res = []
        for t in results:
            bboxes = t['bbox'][0]
            lengths = t['bbox'][1][0]
            if bboxes.shape == (1, 1) or bboxes is None:
                continue

            k = 0
            for i in range(len(lengths)):
                num = lengths[i]
                for j in range(num):
                    dt = bboxes[k]
                    clsid, score, xmin, ymin, xmax, ymax = dt.tolist()
                    catid = (clsid2catid[int(clsid)])

                    if is_bbox_normalized:
                        xmin, ymin, xmax, ymax = \
                            self.clip_bbox([xmin, ymin, xmax, ymax])
                        w = xmax - xmin
                        h = ymax - ymin
                        im_shape = t['im_shape'][0][i].tolist()
                        im_height, im_width = int(im_shape[0]), int(im_shape[1])
                        xmin *= im_width
                        ymin *= im_height
                        w *= im_width
                        h *= im_height
                    else:
                        w = xmax - xmin + 1
                        h = ymax - ymin + 1

                    bbox = [xmin, ymin, w, h]
                    coco_res = {
                        'category_id': catid,
                        'bbox': bbox,
                        'score': score
                    }
                    xywh_res.append(coco_res)
                    k += 1
        return xywh_res

    def _get_bbox_result(self, fetch_map, fetch_name, clsid2catid):
        result = {}
        is_bbox_normalized = False
        output = fetch_map[fetch_name]
        lod = [fetch_map[fetch_name + '.lod']]
        lengths = self._offset_to_lengths(lod)
        np_data = np.array(output)
        result['bbox'] = (np_data, lengths)
        result['im_id'] = np.array([[0]])

        bbox_results = self._bbox2out([result], clsid2catid, is_bbox_normalized)
        return bbox_results

    def color_map(self, num_classes):
        color_map = num_classes * [0, 0, 0]
        for i in range(0, num_classes):
            j = 0
            lab = i
            while lab:
                color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
                color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
                color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
                j += 1
                lab >>= 3
        color_map = np.array(color_map).reshape(-1, 3)
        return color_map

    def draw_bbox(self, image, catid2name, bboxes, threshold, color_list):
        """
        draw bbox on image
        """
        draw = ImageDraw.Draw(image)

        for dt in np.array(bboxes):
            catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
            if score < threshold:
                continue

            xmin, ymin, w, h = bbox
            xmax = xmin + w
            ymax = ymin + h

            color = tuple(color_list[catid])

            # draw bbox
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=2,
                fill=color)

            # draw label
            text = "{} {:.2f}".format(catid2name[catid], score)
            tw, th = draw.textsize(text)
            draw.rectangle(
                [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
            draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))

        return image

    def visualize(self, infer_img, bbox_results, catid2name, num_classes):
        image = Image.open(infer_img).convert('RGB')
        color_list = self.color_map(num_classes)
        image = self.draw_bbox(image, self.catid2name, bbox_results, 0.5,
                               color_list)
        image_path = os.path.split(infer_img)[-1]
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, image_path)
        image.save(out_path, quality=95)

    def __call__(self, image_with_bbox):
        fetch_name = ""
        for key in image_with_bbox:
            if key == "image":
                continue
            if ".lod" in key:
                continue
            fetch_name = key
        bbox_result = self._get_bbox_result(image_with_bbox, fetch_name,
                                            self.clsid2catid)
        if os.path.isdir(self.output_dir) is False:
            os.mkdir(self.output_dir)
        self.visualize(image_with_bbox["image"], bbox_result, self.catid2name,
                       len(self.label_list))
        if os.path.isdir(self.output_dir) is False:
            os.mkdir(self.output_dir)
        bbox_file = os.path.join(self.output_dir, 'bbox.json')
        with open(bbox_file, 'w') as f:
            json.dump(bbox_result, f, indent=4)

    def __repr__(self):
        return self.__class__.__name__ + "label_file: {1}, output_dir: {2}".format(
            self.label_file, self.output_dir)


236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
class Sequential(object):
    """
    Args:
        sequence (sequence of ``Transform`` objects): list of transforms to chain.

    This API references some of the design pattern of torchvision
    Users can simply use this API in training as well

    Example:
        >>> image_reader.Sequnece([
        >>>     transforms.CenterCrop(10),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string_ = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string_ += '\n'
            format_string_ += '    {0}'.format(t)
        format_string_ += '\n)'
        return format_string_


267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
class RGB2BGR(object):
    def __init__(self):
        pass

    def __call__(self, img):
        return img[:, :, ::-1]

    def __repr__(self):
        return self.__class__.__name__ + "()"


class BGR2RGB(object):
    def __init__(self):
        pass

    def __call__(self, img):
        return img[:, :, ::-1]

    def __repr__(self):
        return self.__class__.__name__ + "()"


289 290 291 292 293 294 295 296 297
class File2Image(object):
    def __init__(self):
        pass

    def __call__(self, img_path):
        fin = open(img_path)
        sample = fin.read()
        data = np.fromstring(sample, np.uint8)
        img = cv2.imdecode(data, cv2.IMREAD_COLOR)
298 299 300 301 302 303
        '''
        img = cv2.imread(img_path, -1)
        channels = img.shape[2]
        ori_h = img.shape[0]
        ori_w = img.shape[1]
        '''
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        return img

    def __repr__(self):
        return self.__class__.__name__ + "()"


class URL2Image(object):
    def __init__(self):
        pass

    def __call__(self, img_url):
        resp = urllib.urlopen(img_url)
        sample = resp.read()
        data = np.fromstring(sample, np.uint8)
        img = cv2.imdecode(data, cv2.IMREAD_COLOR)
        return img

    def __repr__(self):
        return self.__class__.__name__ + "()"


325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
class Base64ToImage(object):
    def __init__(self):
        pass

    def __call__(self, img_base64):
        img = base64.b64decode(img_base64)
        return img

    def __repr__(self):
        return self.__class__.__name__ + "()"


class Div(object):
    """ divide by some float number """

    def __init__(self, value):
        self.value = value

    def __call__(self, img):
        """
        Args:
            img (numpy array): (int8 numpy array)

        Returns:
            img (numpy array): (float32 numpy array)
        """
        img = img.astype('float32') / self.value

        return img

    def __repr__(self):
        return self.__class__.__name__ + "({})".format(self.value)


359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
class Normalize(object):
    """Normalize a tensor image with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    .. note::
        This transform acts out of place, i.e., it does not mutate the input tensor.

    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.

    """

374
    def __init__(self, mean, std, channel_first=False):
375 376
        self.mean = mean
        self.std = std
377
        self.channel_first = channel_first
378 379 380 381 382 383 384 385 386

    def __call__(self, img):
        """
        Args:
            img (numpy array): (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
387
        return F.normalize(img, self.mean, self.std, self.channel_first)
388 389 390 391 392 393

    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean,
                                                                      self.std)


394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
class Lambda(object):
    """Apply a user-defined lambda as a transform.
       Very shame to just copy from 
       https://github.com/pytorch/vision/blob/master/torchvision/transforms/transforms.py#L301

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
        assert callable(lambd), repr(type(lambd)
                                     .__name__) + " object is not callable"
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

    def __repr__(self):
        return self.__class__.__name__ + '()'


415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
class CenterCrop(object):
    """Crops the given Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        self.size = size

    def __call__(self, img):
        """
        Args:
            img (numpy array): Image to be cropped.

        Returns:
            numpy array Image: Cropped image.
        """
        return F.crop(img, self.size, True)

    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)


class Resize(object):
    """Resize the input numpy array Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
451
            ``None``
452 453
    """

454
    def __init__(self, size, max_size=2147483647, interpolation=None):
455
        self.size = size
456
        self.max_size = max_size
457 458 459
        self.interpolation = interpolation

    def __call__(self, img):
460
        return F.resize(img, self.size, self.max_size, self.interpolation)
461

462
    def __repr__(self):
463 464 465
        return self.__class__.__name__ + '(size={0}, max_size={1}, interpolation={2})'.format(
            self.size, self.max_size,
            _cv2_interpolation_to_str[self.interpolation])
M
MRXLT 已提交
466 467


468 469 470 471 472 473 474 475 476 477 478 479 480 481
class Transpose(object):
    def __init__(self, transpose_target):
        self.transpose_target = transpose_target

    def __call__(self, img):
        return F.transpose(img, self.transpose_target)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + \
                        "({})".format(self.transpose_target)
        return format_string


M
MRXLT 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
class ImageReader():
    def __init__(self,
                 image_shape=[3, 224, 224],
                 image_mean=[0.485, 0.456, 0.406],
                 image_std=[0.229, 0.224, 0.225],
                 resize_short_size=256,
                 interpolation=None,
                 crop_center=True):
        self.image_mean = image_mean
        self.image_std = image_std
        self.image_shape = image_shape
        self.resize_short_size = resize_short_size
        self.interpolation = interpolation
        self.crop_center = crop_center

    def resize_short(self, img, target_size, interpolation=None):
        """resize image

        Args:
            img: image data
            target_size: resize short target size
            interpolation: interpolation mode

        Returns:
            resized image data
        """
        percent = float(target_size) / min(img.shape[0], img.shape[1])
        resized_width = int(round(img.shape[1] * percent))
        resized_height = int(round(img.shape[0] * percent))
        if interpolation:
            resized = cv2.resize(
                img, (resized_width, resized_height),
                interpolation=interpolation)
        else:
            resized = cv2.resize(img, (resized_width, resized_height))
        return resized

    def crop_image(self, img, target_size, center):
        """crop image

        Args:
            img: images data
            target_size: crop target size
            center: crop mode

        Returns:
            img: cropped image data
        """
        height, width = img.shape[:2]
        size = target_size
        if center == True:
            w_start = (width - size) // 2
            h_start = (height - size) // 2
        else:
            w_start = np.random.randint(0, width - size + 1)
            h_start = np.random.randint(0, height - size + 1)
        w_end = w_start + size
        h_end = h_start + size
        img = img[h_start:h_end, w_start:w_end, :]
        return img

    def process_image(self, sample):
        """ process_image """
        mean = self.image_mean
        std = self.image_std
        crop_size = self.image_shape[1]

        data = np.fromstring(sample, np.uint8)
        img = cv2.imdecode(data, cv2.IMREAD_COLOR)

        if img is None:
            print("img is None, pass it.")
            return None

        if crop_size > 0:
            target_size = self.resize_short_size
            img = self.resize_short(
                img, target_size, interpolation=self.interpolation)
            img = self.crop_image(
                img, target_size=crop_size, center=self.crop_center)

        img = img[:, :, ::-1]

        img = img.astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        return img