提交 4d3c9460 编写于 作者: M MRXLT

refine app

上级 a3f85163
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
from collections import OrderedDict
class ServingModels(object):
def __init__(self):
self.model_dict = OrderedDict()
#senta
for key in [
"senta_bilstm", "senta_bow", "senta_cnn", "senta_gru",
"senta_lstm"
]:
self.model_dict[
key] = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/" + key + ".tar.gz"
#image classification
for key in ["alexnet_imagenet"]:
self.model_dict[
key] = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/" + key + ".tar.gz"
def get_model_list(self):
return (self.model_dict.keys())
def download(self, model_name):
if model_name in self.model_dict:
url = self.model_dict[model_name]
r = os.system('wget ' + url + ' --no-check-certificate')
if __name__ == "__main__":
models = ServingModels()
print(models.get_model_list())
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
class ImageReader():
def __init__(self,
image_shape=[3, 224, 224],
image_mean=[0.485, 0.456, 0.406],
image_std=[0.229, 0.224, 0.225],
resize_short_size=256,
interpolation=None,
crop_center=True):
self.image_mean = image_mean
self.image_std = image_std
self.image_shape = image_shape
self.resize_short_size = resize_short_size
self.interpolation = interpolation
self.crop_center = crop_center
def resize_short(self, img, target_size, interpolation=None):
"""resize image
Args:
img: image data
target_size: resize short target size
interpolation: interpolation mode
Returns:
resized image data
"""
percent = float(target_size) / min(img.shape[0], img.shape[1])
resized_width = int(round(img.shape[1] * percent))
resized_height = int(round(img.shape[0] * percent))
if interpolation:
resized = cv2.resize(
img, (resized_width, resized_height),
interpolation=interpolation)
else:
resized = cv2.resize(img, (resized_width, resized_height))
return resized
def crop_image(self, img, target_size, center):
"""crop image
Args:
img: images data
target_size: crop target size
center: crop mode
Returns:
img: cropped image data
"""
height, width = img.shape[:2]
size = target_size
if center == True:
w_start = (width - size) // 2
h_start = (height - size) // 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
img = img[h_start:h_end, w_start:w_end, :]
return img
def process_image(self, sample):
""" process_image """
mean = self.image_mean
std = self.image_std
crop_size = self.image_shape[1]
data = np.fromstring(sample, np.uint8)
img = cv2.imdecode(data, cv2.IMREAD_COLOR)
if img is None:
print("img is None, pass it.")
return None
if crop_size > 0:
target_size = self.resize_short_size
img = self.resize_short(
img, target_size, interpolation=self.interpolation)
img = self.crop_image(
img, target_size=crop_size, center=self.crop_center)
img = img[:, :, ::-1]
img = img.astype('float32').transpose((2, 0, 1)) / 255
img_mean = np.array(mean).reshape((3, 1, 1))
img_std = np.array(std).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册