PIPELINE_SERVING_CN.md 15.0 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
# Pipeline Serving

Paddle Serving 通常用于单模型的一键部署,但端到端的深度学习模型当前还不能解决所有问题,多个深度学习模型配合起来使用还是解决现实问题的常规手段。

Paddle Serving 提供了用户友好的多模型组合服务编程框架,Pipeline Serving,旨在降低编程门槛,提升整体的预估效率。

## 整体架构设计

Server端基于 gRPC 和图执行引擎构建,两者的关系如下图所示。

<center>
<img src='pipeline_serving-image1.png' height = "250" align="middle"/>
</center>

### 图执行引擎

图执行引擎由 OP 和 Channel 构成,相连接的 OP 之间会共享一个 Channel。

- Channel 可以理解为一个缓冲队列。每个 OP 只接受一个 Channel 的输入和一个多个 Channel 的输出(每个输出相同);一个 Channel 可以包含来自多个 OP 的输出,同一个 Channel 的数据可以作为多个 OP 的输入Channel
- 用户只需要定义 OP 间的关系,在编译期图引擎负责分析整个图的依赖关系,并声明Channel
- Request 进入图执行引擎服务后会产生一个 Request Id,Reponse 会通过 Request Id 进行对应的返回
- 对于 OP 之间需要传输过大数据的情况,可以考虑 RAM DB 外存进行全局存储,通过在 Channel 中传递索引的 Key 来进行数据传输

<center>
<img src='pipeline_serving-image2.png' height = "300" align="middle"/>
</center>


### OP的设计

- 单个OP默认的功能是根据输入的 Channel 数据,访问一个 Paddle Serving 的单模型服务,并将结果存在输出的 Channel
- 单个 OP 可以支持用户自定义,包括 preprocess,process,postprocess 三个函数都可以由用户继承和实现
- 单个 OP 可以控制并发数,从而增加处理并发数
- OP 可以由线程或进程启动

### Channel的设计

- Channel 是 OP 之间共享数据的数据结构,负责共享数据或者共享数据状态信息
- Channel 可以支持多个OP的输出存储在同一个 Channel,同一个 Channel 中的数据可以被多个 OP 使用
- 下图为图执行引擎中 Channel 的设计,采用 input buffer 和 output buffer 进行多 OP 输入或多 OP 输出的数据对齐,中间采用一个 Queue 进行缓冲

<center>
<img src='pipeline_serving-image3.png' height = "500" align="middle"/>
</center>


### 极端情况的考虑

- 请求超时的处理

  整个图执行引擎每一步都有可能发生超时,图执行引擎里面通过设置 timeout 值来控制,任何环节超时的请求都会返回超时响应。

- Channel 存储的数据过大

  Channel 中可能会存储过大的数据,导致拷贝等耗时过高,图执行引擎里面可以通过将 OP 计算结果数据存储到外存,如高速的内存 KV 系统

- Channel 设计中的 input buffer 和 output buffer 是否会无限增加

  - 不会。整个图执行引擎的输入会放到一个 Channel 的 internal queue 里面,直接作为整个服务的流量控制缓冲队列
  - 对于 input buffer,根据计算量的情况调整 OP1 和 OP2 的并发数,使得 input buffer 来自各个输入 OP 的数量相对平衡
  - 对于 output buffer,可以采用和 input buffer 类似的处理方法,即调整 OP3 和 OP4 的并发数,使得 output buffer 的缓冲长度得到控制
  - 注:input buffer 的长度取决于 internal queue 中每个 item 完全 ready 的速度,output buffer 的长度取决于下游 OP 从 output buffer 获取数据的速度

## 详细设计

### 用户接口设计

#### 1. 普通 OP 定义

普通 OP 作为图执行引擎中的基本单元,其构造函数如下:

```python
def __init__(name=None,
             input_ops=[],
             server_endpoints=[],
             fetch_list=[],
             client_config=None,
             concurrency=1,
             timeout=-1,
             retry=1)
```

各参数含义如下

|      参数名      |                             含义                             |
| :--------------: | :----------------------------------------------------------: |
|       name       |    (str)用于标识 OP 类型的字符串,该字段必须全局唯一。     |
|    input_ops     |            (list)当前 OP 的所有前继 OP 的列表。            |
| server_endpoints | (list)远程 Paddle Serving Service 的 endpoints 列表。如果不设置该参数,则不访问远程 Paddle Serving Service,即 不会执行 process 操作。 |
|    fetch_list    |     (list)远程 Paddle Serving Service 的 fetch 列表。      |
|  client_config   | (str)Paddle Serving Service 对应的 Client 端配置文件路径。 |
|   concurrency    |                     (int)OP 的并发数。                     |
|     timeout      | (int)process 操作的超时时间,单位为秒。若该值小于零,则视作不超时。 |
|      retry       |       (int)超时重试次数。当该值为 1 时,不进行重试。       |

#### 2. 普通 OP二次开发接口

|                   变量或接口                   |                             说明                             |
| :--------------------------------------------: | :----------------------------------------------------------: |
|       def preprocess(self, input_dicts)        | 对从 Channel 中获取的数据进行处理,处理完的数据将作为 **process** 函数的输入。 |
|          def process(self, feed_dict)          | 基于 Paddle Serving Client 进行 RPC 预测,处理完的数据将作为 **postprocess** 函数的输入。 |
| def postprocess(self, input_dicts, fetch_dict) | 处理预测结果,处理完的数据将被放入后继 Channel 中,以被后继 OP 获取。 |
|               def init_op(self)                |                  用于加载资源(如字典等)。                  |
|              self.concurrency_idx              |   当前线程(进程)的并发数索引(不同种类的 OP 单独计算)。   |

OP 在一个运行周期中会依次执行 preprocess,process,postprocess 三个操作(当不设置 `server_endpoints` 参数时,不执行 process 操作),用户可以对这三个函数进行重写,默认实现如下:

```python
def preprocess(self, input_dicts):
  # multiple previous Op
  if len(input_dicts) != 1:
    raise NotImplementedError(
      'this Op has multiple previous inputs. Please override this func.'
    
  (_, input_dict), = input_dicts.items()
  return input_dict

def process(self, feed_dict):
  err, err_info = ChannelData.check_npdata(feed_dict)
  if err != 0:
    raise NotImplementedError(
      "{} Please override preprocess func.".format(err_info))
  call_result = self.client.predict(
    feed=feed_dict, fetch=self._fetch_names)
  return call_result

def postprocess(self, input_dicts, fetch_dict):
  return fetch_dict
```

**preprocess** 的参数是前继 Channel 中的数据 `input_dicts`,该变量是一个以前继 OP 的 name 为 Key,对应 OP 的输出为 Value 的字典。

**process ** 的参数是 Paddle Serving Client 预测接口的输入变量 `fetch_dict`(preprocess 函数的返回值),该变量是一个以 feed_name 为 Key,对应 ndarray 格式的数据为 Value 的字典。

**postprocess** 的参数是 `input_dicts``fetch_dict``input_dicts` 与 preprocess 的参数一致,`fetch_dict` 是 process 函数的返回值(如果没有执行 process ,则该值为 preprocess 的返回值)。

用户还可以对 **init_op** 函数进行重写,已加载自定义的一些资源(比如字典等),默认实现如下:

```python
def init_op(self):
  pass
```

需要注意的是,在线程版 OP 中,每个 OP 只会调用一次该函数,故加载的资源必须要求是线程安全的。

#### 3. RequestOp 定义

RequestOp 用于处理 Pipeline Server 接收到的 RPC 数据,处理后的数据将会被加入到图执行引擎中。其构造函数如下:

```python
def __init__(self)
```

#### 4. RequestOp 二次开发接口

|                变量或接口                 |                    说明                    |
| :---------------------------------------: | :----------------------------------------: |
|             def init_op(self)             | 用于加载资源(如字典等),与普通 OP 一致。 |
| def unpack_request_package(self, request) |          处理接收到的 RPC 数据。           |

**unpack_request_package** 的默认实现是将 RPC request 中的 key 和 value 做成字典:

```python
def unpack_request_package(self, request):
  dictdata = {}
  for idx, key in enumerate(request.key):
    data = request.value[idx]
    try:
      data = eval(data)
    except Exception as e:
      pass
    dictdata[key] = data
  return dictdata
```

要求返回值是一个字典类型。

#### 5. ResponseOp 定义

ResponseOp 用于处理图执行引擎的预测结果,处理后的数据将会作为 Pipeline Server 的RPC 返回值,其构造函数如下:

```python
def __init__(self, input_ops)
```

其中,`input_ops` 是图执行引擎的最后一个 OP,用户可以通过设置不同的 `input_ops` 以在不修改 OP 的拓扑关系下构造不同的 DAG。

#### 6. ResponseOp 二次开发接口

|                  变量或接口                  |                    说明                     |
| :------------------------------------------: | :-----------------------------------------: |
|              def init_op(self)               | 用于加载资源(如字典等),与普通 OP 一致。  |
| def pack_response_package(self, channeldata) | 处理图执行引擎的预测结果,作为 RPC 的返回。 |

**pack_response_package** 的默认实现是将预测结果的字典转化为 RPC response 中的 key 和 value:

```python
def pack_response_package(self, channeldata):
  resp = pipeline_service_pb2.Response()
  resp.ecode = channeldata.ecode
  if resp.ecode == ChannelDataEcode.OK.value:
    if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
      feed = channeldata.parse()
      np.set_printoptions(threshold=np.nan)
      for name, var in feed.items():
        resp.value.append(var.__repr__())
        resp.key.append(name)
    elif channeldata.datatype == ChannelDataType.DICT.value:
      feed = channeldata.parse()
      for name, var in feed.items():
        if not isinstance(var, str):
          resp.ecode = ChannelDataEcode.TYPE_ERROR.value
          resp.error_info = self._log(
            "fetch var type must be str({}).".format(type(var)))
          break
        resp.value.append(var)
        resp.key.append(name)
    else:
      resp.ecode = ChannelDataEcode.TYPE_ERROR.value
      resp.error_info = self._log(
        "Error type({}) in datatype.".format(channeldata.datatype))
  else:
    resp.error_info = channeldata.error_info
  return resp
```

#### 7. PipelineServer定义

PipelineServer 的定义比较简单,如下所示:

```python
server = PipelineServer()
server.set_response_op(response_op)
server.prepare_server(config_yml_path)
server.run_server()
```

其中,`response_op` 为上面提到的 ResponseOp,PipelineServer 将会根据各个 OP 的拓扑关系初始化 Channel 并构建计算图。`config_yml_path` 为 PipelineServer 的配置文件,示例文件如下:

```yaml
port: 18080  # gRPC端口号
worker_num: 1  # gRPC线程池大小(进程版 Servicer 中为进程数),默认为 1
build_dag_each_worker: false  # 是否使用进程版 Servicer,默认为 false
dag:
    is_thread_op: true  # 是否使用线程版Op,默认为 true
    client_type: brpc  # 使用 brpc 或 grpc client,默认为 brpc
    retry: 1  # DAG Executor 在失败后重试次数,默认为 1,即不重试
    use_profile: false  # 是否在 Server 端打印日志,默认为 false
```



## 例子

这里通过搭建简单的 imdb model ensemble 例子来展示如何使用 Pipeline Serving,相关代码在 `python/examples/pipeline/imdb_model_ensemble` 文件夹下可以找到,例子中的 Server 端结构如下图所示:



<center>
<img src='pipeline_serving-image4.png' height = "200" align="middle"/>
</center>


### 获取模型文件并启动 Paddle Serving Service

```shell
cd python/examples/pipeline/imdb_model_ensemble
sh get_data.sh
python -m paddle_serving_server.serve --model imdb_cnn_model --port 9292 &> cnn.log &
python -m paddle_serving_server.serve --model imdb_bow_model --port 9393 &> bow.log &
```

### 启动 PipelineServer

运行下面代码

```python
from paddle_serving_server.pipeline import Op, RequestOp, ResponseOp
from paddle_serving_server.pipeline import PipelineServer
from paddle_serving_server.pipeline.proto import pipeline_service_pb2
from paddle_serving_server.pipeline.channel import ChannelDataEcode
import numpy as np
import logging
from paddle_serving_app.reader import IMDBDataset

logging.basicConfig(level=logging.DEBUG)

_LOGGER = logging.getLogger()


class ImdbRequestOp(RequestOp):
    def init_op(self):
        self.imdb_dataset = IMDBDataset()
        self.imdb_dataset.load_resource('imdb.vocab')

    def unpack_request_package(self, request):
        dictdata = {}
        for idx, key in enumerate(request.key):
            if key != "words":
                continue
            words = request.value[idx]
            word_ids, _ = self.imdb_dataset.get_words_and_label(words)
            dictdata[key] = np.array(word_ids)
        return dictdata


class CombineOp(Op):
    def preprocess(self, input_data):
        combined_prediction = 0
        for op_name, data in input_data.items():
            _LOGGER.info("{}: {}".format(op_name, data["prediction"]))
            combined_prediction += data["prediction"]
        data = {"prediction": combined_prediction / 2}
        return data


read_op = ImdbRequestOp()
bow_op = Op(name="bow",
            input_ops=[read_op],
            server_endpoints=["127.0.0.1:9393"],
            fetch_list=["prediction"],
            client_config="imdb_bow_client_conf/serving_client_conf.prototxt",
            concurrency=1,
            timeout=-1,
            retry=1)
cnn_op = Op(name="cnn",
            input_ops=[read_op],
            server_endpoints=["127.0.0.1:9292"],
            fetch_list=["prediction"],
            client_config="imdb_cnn_client_conf/serving_client_conf.prototxt",
            concurrency=1,
            timeout=-1,
            retry=1)
combine_op = CombineOp(
    name="combine",
    input_ops=[bow_op, cnn_op],
    concurrency=5,
    timeout=-1,
    retry=1)

# use default ResponseOp implementation
response_op = ResponseOp(input_ops=[combine_op])

server = PipelineServer()
server.set_response_op(response_op)
server.prepare_server('config.yml')
server.run_server()
```

### 通过 PipelineClient 执行预测

```python
from paddle_serving_client.pipeline import PipelineClient
import numpy as np

client = PipelineClient()
client.connect(['127.0.0.1:18080'])

words = 'i am very sad | 0'

futures = []
for i in range(3):
    futures.append(
        client.predict(
            feed_dict={"words": words},
            fetch=["prediction"],
            asyn=True))

for f in futures:
    res = f.result()
    if res["ecode"] != 0:
        print(res)
        exit(1)
```