web_service.py 2.6 KB
Newer Older
B
bjjwwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from paddle_serving_server.web_service import WebService, Op
B
bjjwwang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
import logging
import numpy as np
import sys
import cv2
from paddle_serving_app.reader import *
import base64

class Yolov3Op(Op):
    def init_op(self):
        self.img_preprocess = Sequential([
            BGR2RGB(), Div(255.0),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False),
            Resize((640, 640)), Transpose((2, 0, 1))
        ])
        self.img_postprocess = RCNNPostprocess("label_list.txt", "output")

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        imgs = []
        #print("keys", input_dict.keys())
        for key in input_dict.keys():
            data = base64.b64decode(input_dict[key].encode('utf8'))
            data = np.fromstring(data, np.uint8)
            im = cv2.imdecode(data, cv2.IMREAD_COLOR)
            im = self.img_preprocess(im)
            imgs.append({
              "image": im[np.newaxis,:],
              "im_shape": np.array(list(im.shape[1:])).reshape(-1)[np.newaxis,:],
              "scale_factor": np.array([1.0, 1.0]).reshape(-1)[np.newaxis,:],
            })
        feed_dict = {
            "image": np.concatenate([x["image"] for x in imgs], axis=0),
            "im_shape": np.concatenate([x["im_shape"] for x in imgs], axis=0),
            "scale_factor": np.concatenate([x["scale_factor"] for x in imgs], axis=0)
        }
        #for key in feed_dict.keys():
        #    print(key, feed_dict[key].shape)
        return feed_dict, False, None, ""

    def postprocess(self, input_dicts, fetch_dict, log_id):
        #print(fetch_dict)
        res_dict = {"bbox_result": str(self.img_postprocess(fetch_dict))}
        return res_dict, None, ""


class Yolov3Service(WebService):
    def get_pipeline_response(self, read_op):
        yolov3_op = Yolov3Op(name="yolov3", input_ops=[read_op])
        return yolov3_op


yolov3_service = Yolov3Service(name="yolov3")
yolov3_service.prepare_pipeline_config("config2.yml")
yolov3_service.run_service()