# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_server.web_service import WebService, Op import logging import numpy as np import sys import cv2 from paddle_serving_app.reader import * import base64 class Yolov3Op(Op): def init_op(self): self.img_preprocess = Sequential([ BGR2RGB(), Div(255.0), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False), Resize((640, 640)), Transpose((2, 0, 1)) ]) self.img_postprocess = RCNNPostprocess("label_list.txt", "output") def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() imgs = [] #print("keys", input_dict.keys()) for key in input_dict.keys(): data = base64.b64decode(input_dict[key].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) im = self.img_preprocess(im) imgs.append({ "image": im[np.newaxis,:], "im_shape": np.array(list(im.shape[1:])).reshape(-1)[np.newaxis,:], "scale_factor": np.array([1.0, 1.0]).reshape(-1)[np.newaxis,:], }) feed_dict = { "image": np.concatenate([x["image"] for x in imgs], axis=0), "im_shape": np.concatenate([x["im_shape"] for x in imgs], axis=0), "scale_factor": np.concatenate([x["scale_factor"] for x in imgs], axis=0) } #for key in feed_dict.keys(): # print(key, feed_dict[key].shape) return feed_dict, False, None, "" def postprocess(self, input_dicts, fetch_dict, log_id): #print(fetch_dict) res_dict = {"bbox_result": str(self.img_postprocess(fetch_dict))} return res_dict, None, "" class Yolov3Service(WebService): def get_pipeline_response(self, read_op): yolov3_op = Yolov3Op(name="yolov3", input_ops=[read_op]) return yolov3_op yolov3_service = Yolov3Service(name="yolov3") yolov3_service.prepare_pipeline_config("config2.yml") yolov3_service.run_service()