benchmark_batch.py 2.3 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
from paddle_serving_client import Client
from paddle_serving_client.metric import auc
from paddle_serving_client.utils import MultiThreadRunner
import time
M
MRXLT 已提交
20
from bert_client import BertService
M
MRXLT 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71


def predict(thr_id, resource, batch_size):
    bc = BertService(
        model_name="bert_chinese_L-12_H-768_A-12",
        max_seq_len=20,
        do_lower_case=True)
    bc.load_client(resource["conf_file"], resource["server_endpoint"])
    thread_num = resource["thread_num"]
    file_list = resource["filelist"]
    line_id = 0
    result = []
    label_list = []
    dataset = []
    for fn in file_list:
        fin = open(fn)
        for line in fin:
            if line_id % thread_num == thr_id - 1:
                dataset.append(line.strip())
            line_id += 1
        fin.close()

    start = time.time()
    fetch = ["pooled_output"]
    batch = []
    for inst in dataset:
        if len(batch) < batch_size:
            batch.append([inst])
        else:
            fetch_map_batch = bc.run_batch_general(batch, fetch)
            batch = []
            result.append(fetch_map_batch)
    end = time.time()
    return [result, label_list, [end - start]]


if __name__ == '__main__':
    conf_file = sys.argv[1]
    data_file = sys.argv[2]
    thread_num = sys.argv[3]
    batch_size = sys.ragv[4]
    resource = {}
    resource["conf_file"] = conf_file
    resource["server_endpoint"] = ["127.0.0.1:9293"]
    resource["filelist"] = [data_file]
    resource["thread_num"] = int(thread_num)

    thread_runner = MultiThreadRunner()
    result = thread_runner.run(predict, int(sys.argv[3]), resource, batch_size)

    print("total time {} s".format(sum(result[-1]) / len(result[-1])))