__init__.py 22.4 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

G
guru4elephant 已提交
16
import os
17 18 19
from .proto import server_configure_pb2 as server_sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
M
MRXLT 已提交
20
import tarfile
M
MRXLT 已提交
21
import socket
M
MRXLT 已提交
22
import paddle_serving_server as paddle_serving_server
23
from .version import serving_server_version
M
MRXLT 已提交
24
from contextlib import closing
B
barrierye 已提交
25
import collections
M
MRXLT 已提交
26
import fcntl
M
MRXLT 已提交
27

B
barrierye 已提交
28
import numpy as np
B
barrierye 已提交
29
import grpc
B
barrierye 已提交
30 31
import gserver_general_model_service_pb2
import gserver_general_model_service_pb2_grpc
B
barrierye 已提交
32 33
from multiprocessing import Pool, Process
from concurrent import futures
B
barrierye 已提交
34

G
guru4elephant 已提交
35 36 37

class OpMaker(object):
    def __init__(self):
38
        self.op_dict = {
M
MRXLT 已提交
39 40 41 42 43 44
            "general_infer": "GeneralInferOp",
            "general_reader": "GeneralReaderOp",
            "general_response": "GeneralResponseOp",
            "general_text_reader": "GeneralTextReaderOp",
            "general_text_response": "GeneralTextResponseOp",
            "general_single_kv": "GeneralSingleKVOp",
W
wangjiawei04 已提交
45
            "general_dist_kv_infer": "GeneralDistKVInferOp",
W
wangjiawei04 已提交
46
            "general_dist_kv_quant_infer": "GeneralDistKVQuantInferOp",
G
guru4elephant 已提交
47
            "general_copy": "GeneralCopyOp"
48
        }
B
barrierye 已提交
49
        self.node_name_suffix_ = collections.defaultdict(int)
G
guru4elephant 已提交
50

B
barrierye 已提交
51
    def create(self, node_type, engine_name=None, inputs=[], outputs=[]):
B
barrierye 已提交
52 53 54
        if node_type not in self.op_dict:
            raise Exception("Op type {} is not supported right now".format(
                node_type))
G
guru4elephant 已提交
55
        node = server_sdk.DAGNode()
B
barrierye 已提交
56 57 58 59 60 61 62 63
        # node.name will be used as the infer engine name
        if engine_name:
            node.name = engine_name
        else:
            node.name = '{}_{}'.format(node_type,
                                       self.node_name_suffix_[node_type])
            self.node_name_suffix_[node_type] += 1

B
barrierye 已提交
64
        node.type = self.op_dict[node_type]
B
barrierye 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
        if inputs:
            for dep_node_str in inputs:
                dep_node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(dep_node_str, dep_node)
                dep = server_sdk.DAGNodeDependency()
                dep.name = dep_node.name
                dep.mode = "RO"
                node.dependencies.extend([dep])
        # Because the return value will be used as the key value of the
        # dict, and the proto object is variable which cannot be hashed,
        # so it is processed into a string. This has little effect on
        # overall efficiency.
        return google.protobuf.text_format.MessageToString(node)
G
guru4elephant 已提交
78

M
MRXLT 已提交
79

G
guru4elephant 已提交
80 81 82 83 84 85
class OpSeqMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        self.workflow.workflow_type = "Sequence"

B
barrierye 已提交
86 87 88 89 90 91 92
    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        if len(node.dependencies) > 1:
            raise Exception(
                'Set more than one predecessor for op in OpSeqMaker is not allowed.'
            )
G
guru4elephant 已提交
93
        if len(self.workflow.nodes) >= 1:
B
barrierye 已提交
94
            if len(node.dependencies) == 0:
B
barrierye 已提交
95 96 97 98
                dep = server_sdk.DAGNodeDependency()
                dep.name = self.workflow.nodes[-1].name
                dep.mode = "RO"
                node.dependencies.extend([dep])
B
barrierye 已提交
99 100 101 102 103 104
            elif len(node.dependencies) == 1:
                if node.dependencies[0].name != self.workflow.nodes[-1].name:
                    raise Exception(
                        'You must add op in order in OpSeqMaker. The previous op is {}, but the current op is followed by {}.'.
                        format(node.dependencies[0].name, self.workflow.nodes[
                            -1].name))
G
guru4elephant 已提交
105 106 107 108 109 110 111
        self.workflow.nodes.extend([node])

    def get_op_sequence(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf

M
MRXLT 已提交
112

B
barrierye 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
class OpGraphMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        # Currently, SDK only supports "Sequence"
        self.workflow.workflow_type = "Sequence"

    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        self.workflow.nodes.extend([node])

    def get_op_graph(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


G
guru4elephant 已提交
131 132 133 134 135
class Server(object):
    def __init__(self):
        self.server_handle_ = None
        self.infer_service_conf = None
        self.model_toolkit_conf = None
G
guru4elephant 已提交
136
        self.resource_conf = None
137
        self.memory_optimization = False
M
MRXLT 已提交
138
        self.ir_optimization = False
139
        self.model_conf = None
G
guru4elephant 已提交
140 141 142 143
        self.workflow_fn = "workflow.prototxt"
        self.resource_fn = "resource.prototxt"
        self.infer_service_fn = "infer_service.prototxt"
        self.model_toolkit_fn = "model_toolkit.prototxt"
144
        self.general_model_config_fn = "general_model.prototxt"
W
wangjiawei04 已提交
145
        self.cube_config_fn = "cube.conf"
G
guru4elephant 已提交
146 147
        self.workdir = ""
        self.max_concurrency = 0
M
MRXLT 已提交
148
        self.num_threads = 4
G
guru4elephant 已提交
149 150
        self.port = 8080
        self.reload_interval_s = 10
M
MRXLT 已提交
151
        self.max_body_size = 64 * 1024 * 1024
M
MRXLT 已提交
152 153
        self.module_path = os.path.dirname(paddle_serving_server.__file__)
        self.cur_path = os.getcwd()
M
MRXLT 已提交
154
        self.use_local_bin = False
M
MRXLT 已提交
155
        self.mkl_flag = False
B
barrierye 已提交
156
        self.model_config_paths = None  # for multi-model in a workflow
G
guru4elephant 已提交
157 158 159 160 161 162 163

    def set_max_concurrency(self, concurrency):
        self.max_concurrency = concurrency

    def set_num_threads(self, threads):
        self.num_threads = threads

M
MRXLT 已提交
164 165 166 167 168 169 170 171
    def set_max_body_size(self, body_size):
        if body_size >= self.max_body_size:
            self.max_body_size = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )

G
guru4elephant 已提交
172 173 174 175 176
    def set_port(self, port):
        self.port = port

    def set_reload_interval(self, interval):
        self.reload_interval_s = interval
G
guru4elephant 已提交
177 178 179 180

    def set_op_sequence(self, op_seq):
        self.workflow_conf = op_seq

B
barrierye 已提交
181 182 183
    def set_op_graph(self, op_graph):
        self.workflow_conf = op_graph

184 185 186
    def set_memory_optimize(self, flag=False):
        self.memory_optimization = flag

M
MRXLT 已提交
187 188 189
    def set_ir_optimize(self, flag=False):
        self.ir_optimization = flag

M
MRXLT 已提交
190 191 192 193
    def check_local_bin(self):
        if "SERVING_BIN" in os.environ:
            self.use_local_bin = True
            self.bin_path = os.environ["SERVING_BIN"]
M
MRXLT 已提交
194

B
barrierye 已提交
195
    def _prepare_engine(self, model_config_paths, device):
G
guru4elephant 已提交
196 197
        if self.model_toolkit_conf == None:
            self.model_toolkit_conf = server_sdk.ModelToolkitConf()
198

B
barrierye 已提交
199 200 201 202 203 204 205 206 207 208 209
        for engine_name, model_config_path in model_config_paths.items():
            engine = server_sdk.EngineDesc()
            engine.name = engine_name
            engine.reloadable_meta = model_config_path + "/fluid_time_file"
            os.system("touch {}".format(engine.reloadable_meta))
            engine.reloadable_type = "timestamp_ne"
            engine.runtime_thread_num = 0
            engine.batch_infer_size = 0
            engine.enable_batch_align = 0
            engine.model_data_path = model_config_path
            engine.enable_memory_optimization = self.memory_optimization
M
MRXLT 已提交
210
            engine.enable_ir_optimization = self.ir_optimization
B
barrierye 已提交
211 212 213 214 215 216 217 218 219
            engine.static_optimization = False
            engine.force_update_static_cache = False

            if device == "cpu":
                engine.type = "FLUID_CPU_ANALYSIS_DIR"
            elif device == "gpu":
                engine.type = "FLUID_GPU_ANALYSIS_DIR"

            self.model_toolkit_conf.engines.extend([engine])
G
guru4elephant 已提交
220 221 222 223 224 225 226 227 228 229 230 231

    def _prepare_infer_service(self, port):
        if self.infer_service_conf == None:
            self.infer_service_conf = server_sdk.InferServiceConf()
            self.infer_service_conf.port = port
            infer_service = server_sdk.InferService()
            infer_service.name = "GeneralModelService"
            infer_service.workflows.extend(["workflow1"])
            self.infer_service_conf.services.extend([infer_service])

    def _prepare_resource(self, workdir):
        if self.resource_conf == None:
M
MRXLT 已提交
232 233
            with open("{}/{}".format(workdir, self.general_model_config_fn),
                      "w") as fout:
234
                fout.write(str(self.model_conf))
G
guru4elephant 已提交
235
            self.resource_conf = server_sdk.ResourceConf()
W
wangjiawei04 已提交
236 237 238 239 240
            for workflow in self.workflow_conf.workflows:
                for node in workflow.nodes:
                    if "dist_kv" in node.name:
                        self.resource_conf.cube_config_path = workdir
                        self.resource_conf.cube_config_file = self.cube_config_fn
W
wangjiawei04 已提交
241 242
                        if "quant" in node.name:
                            self.resource_conf.cube_quant_bits = 8
G
guru4elephant 已提交
243
            self.resource_conf.model_toolkit_path = workdir
G
guru4elephant 已提交
244
            self.resource_conf.model_toolkit_file = self.model_toolkit_fn
245 246
            self.resource_conf.general_model_path = workdir
            self.resource_conf.general_model_file = self.general_model_config_fn
G
guru4elephant 已提交
247 248 249 250 251

    def _write_pb_str(self, filepath, pb_obj):
        with open(filepath, "w") as fout:
            fout.write(str(pb_obj))

B
barrierye 已提交
252
    def load_model_config(self, model_config_paths):
B
barrierye 已提交
253 254 255
        # At present, Serving needs to configure the model path in
        # the resource.prototxt file to determine the input and output
        # format of the workflow. To ensure that the input and output
B
barrierye 已提交
256
        # of multiple models are the same.
B
barrierye 已提交
257 258
        workflow_oi_config_path = None
        if isinstance(model_config_paths, str):
B
barrierye 已提交
259
            # If there is only one model path, use the default infer_op.
M
MRXLT 已提交
260
            # Because there are several infer_op type, we need to find
B
barrierye 已提交
261 262 263
            # it from workflow_conf.
            default_engine_names = [
                'general_infer_0', 'general_dist_kv_infer_0',
B
barrierye 已提交
264
                'general_dist_kv_quant_infer_0'
B
barrierye 已提交
265 266 267 268 269 270 271 272 273 274 275 276
            ]
            engine_name = None
            for node in self.workflow_conf.workflows[0].nodes:
                if node.name in default_engine_names:
                    engine_name = node.name
                    break
            if engine_name is None:
                raise Exception(
                    "You have set the engine_name of Op. Please use the form {op: model_path} to configure model path"
                )
            self.model_config_paths = {engine_name: model_config_paths}
            workflow_oi_config_path = self.model_config_paths[engine_name]
B
barrierye 已提交
277 278 279 280 281 282 283 284
        elif isinstance(model_config_paths, dict):
            self.model_config_paths = {}
            for node_str, path in model_config_paths.items():
                node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(node_str, node)
                self.model_config_paths[node.name] = path
            print("You have specified multiple model paths, please ensure "
                  "that the input and output of multiple models are the same.")
M
MRXLT 已提交
285 286
            workflow_oi_config_path = list(self.model_config_paths.items())[0][
                1]
B
barrierye 已提交
287 288 289 290 291
        else:
            raise Exception("The type of model_config_paths must be str or "
                            "dict({op: model_path}), not {}.".format(
                                type(model_config_paths)))

292
        self.model_conf = m_config.GeneralModelConfig()
B
barrierye 已提交
293 294 295
        f = open(
            "{}/serving_server_conf.prototxt".format(workflow_oi_config_path),
            'r')
296 297
        self.model_conf = google.protobuf.text_format.Merge(
            str(f.read()), self.model_conf)
G
guru4elephant 已提交
298
        # check config here
299
        # print config here
G
guru4elephant 已提交
300

M
MRXLT 已提交
301 302
    def use_mkl(self, flag):
        self.mkl_flag = flag
M
MRXLT 已提交
303

M
MRXLT 已提交
304 305
    def get_device_version(self):
        avx_flag = False
M
MRXLT 已提交
306
        mkl_flag = self.mkl_flag
M
MRXLT 已提交
307 308 309 310 311 312 313 314 315 316
        openblas_flag = False
        r = os.system("cat /proc/cpuinfo | grep avx > /dev/null 2>&1")
        if r == 0:
            avx_flag = True
        if avx_flag:
            if mkl_flag:
                device_version = "serving-cpu-avx-mkl-"
            else:
                device_version = "serving-cpu-avx-openblas-"
        else:
M
MRXLT 已提交
317 318 319 320
            if mkl_flag:
                print(
                    "Your CPU does not support AVX, server will running with noavx-openblas mode."
                )
M
MRXLT 已提交
321 322 323 324 325 326 327 328 329 330 331
            device_version = "serving-cpu-noavx-openblas-"
        return device_version

    def download_bin(self):
        os.chdir(self.module_path)
        need_download = False
        device_version = self.get_device_version()
        floder_name = device_version + serving_server_version
        tar_name = floder_name + ".tar.gz"
        bin_url = "https://paddle-serving.bj.bcebos.com/bin/" + tar_name
        self.server_path = os.path.join(self.module_path, floder_name)
332

M
MRXLT 已提交
333 334 335 336
        #acquire lock
        version_file = open("{}/version.py".format(self.module_path), "r")
        fcntl.flock(version_file, fcntl.LOCK_EX)

M
MRXLT 已提交
337 338 339 340 341 342
        if not os.path.exists(self.server_path):
            print('Frist time run, downloading PaddleServing components ...')
            r = os.system('wget ' + bin_url + ' --no-check-certificate')
            if r != 0:
                if os.path.exists(tar_name):
                    os.remove(tar_name)
M
MRXLT 已提交
343 344 345
                raise SystemExit(
                    'Download failed, please check your network or permission of {}.'.
                    format(self.module_path))
M
MRXLT 已提交
346 347 348 349 350 351 352 353 354
            else:
                try:
                    print('Decompressing files ..')
                    tar = tarfile.open(tar_name)
                    tar.extractall()
                    tar.close()
                except:
                    if os.path.exists(exe_path):
                        os.remove(exe_path)
M
MRXLT 已提交
355 356 357
                    raise SystemExit(
                        'Decompressing failed, please check your permission of {} or disk space left.'.
                        foemat(self.module_path))
M
MRXLT 已提交
358 359
                finally:
                    os.remove(tar_name)
M
MRXLT 已提交
360 361
        #release lock
        version_file.close()
M
MRXLT 已提交
362 363 364
        os.chdir(self.cur_path)
        self.bin_path = self.server_path + "/serving"

G
guru4elephant 已提交
365
    def prepare_server(self, workdir=None, port=9292, device="cpu"):
G
guru4elephant 已提交
366 367 368
        if workdir == None:
            workdir = "./tmp"
            os.system("mkdir {}".format(workdir))
G
guru4elephant 已提交
369 370
        else:
            os.system("mkdir {}".format(workdir))
G
guru4elephant 已提交
371
        os.system("touch {}/fluid_time_file".format(workdir))
G
guru4elephant 已提交
372

M
MRXLT 已提交
373
        if not self.port_is_available(port):
M
MRXLT 已提交
374
            raise SystemExit("Prot {} is already used".format(port))
G
guru4elephant 已提交
375
        self._prepare_resource(workdir)
B
barrierye 已提交
376
        self._prepare_engine(self.model_config_paths, device)
G
guru4elephant 已提交
377
        self._prepare_infer_service(port)
M
MRXLT 已提交
378
        self.port = port
G
guru4elephant 已提交
379 380
        self.workdir = workdir

G
guru4elephant 已提交
381 382 383 384
        infer_service_fn = "{}/{}".format(workdir, self.infer_service_fn)
        workflow_fn = "{}/{}".format(workdir, self.workflow_fn)
        resource_fn = "{}/{}".format(workdir, self.resource_fn)
        model_toolkit_fn = "{}/{}".format(workdir, self.model_toolkit_fn)
G
guru4elephant 已提交
385 386 387 388 389 390

        self._write_pb_str(infer_service_fn, self.infer_service_conf)
        self._write_pb_str(workflow_fn, self.workflow_conf)
        self._write_pb_str(resource_fn, self.resource_conf)
        self._write_pb_str(model_toolkit_fn, self.model_toolkit_conf)

M
MRXLT 已提交
391
    def port_is_available(self, port):
M
MRXLT 已提交
392 393
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
394
            result = sock.connect_ex(('0.0.0.0', port))
M
MRXLT 已提交
395 396 397 398 399
        if result != 0:
            return True
        else:
            return False

G
guru4elephant 已提交
400 401
    def run_server(self):
        # just run server with system command
G
guru4elephant 已提交
402
        # currently we do not load cube
M
MRXLT 已提交
403
        self.check_local_bin()
M
MRXLT 已提交
404 405
        if not self.use_local_bin:
            self.download_bin()
G
guru4elephant 已提交
406
        else:
M
MRXLT 已提交
407
            print("Use local bin : {}".format(self.bin_path))
M
MRXLT 已提交
408 409
        command = "{} " \
                  "-enable_model_toolkit " \
G
guru4elephant 已提交
410 411 412 413 414 415 416 417 418
                  "-inferservice_path {} " \
                  "-inferservice_file {} " \
                  "-max_concurrency {} " \
                  "-num_threads {} " \
                  "-port {} " \
                  "-reload_interval_s {} " \
                  "-resource_path {} " \
                  "-resource_file {} " \
                  "-workflow_path {} " \
M
MRXLT 已提交
419
                  "-workflow_file {} " \
M
MRXLT 已提交
420 421
                  "-bthread_concurrency {} " \
                  "-max_body_size {} ".format(
M
MRXLT 已提交
422
                      self.bin_path,
G
guru4elephant 已提交
423 424 425 426 427 428 429 430
                      self.workdir,
                      self.infer_service_fn,
                      self.max_concurrency,
                      self.num_threads,
                      self.port,
                      self.reload_interval_s,
                      self.workdir,
                      self.resource_fn,
M
MRXLT 已提交
431 432
                      self.workdir,
                      self.workflow_fn,
M
MRXLT 已提交
433 434
                      self.num_threads,
                      self.max_body_size)
W
wangjiawei04 已提交
435
        print("Going to Run Command")
G
guru4elephant 已提交
436
        print(command)
G
guru4elephant 已提交
437
        os.system(command)
B
barrierye 已提交
438 439 440 441 442 443 444 445


class GServerService(
        gserver_general_model_service_pb2_grpc.GServerGeneralModelService):
    def __init__(self, model_config_path, endpoints):
        from paddle_serving_client import Client
        self._parse_model_config(model_config_path)
        self.bclient_ = Client()
B
barrierye 已提交
446 447
        self.bclient_.load_client_config(
            "{}/serving_server_conf.prototxt".format(model_config_path))
B
barrierye 已提交
448 449 450 451 452 453 454 455 456 457
        self.bclient_.connect(endpoints)

    def _parse_model_config(self, model_config_path):
        model_conf = m_config.GeneralModelConfig()
        f = open("{}/serving_server_conf.prototxt".format(model_config_path),
                 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
B
barrierye 已提交
458
        self.feed_shapes_ = {}
B
barrierye 已提交
459
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
B
barrierye 已提交
460 461 462
        self.fetch_types_ = {}
        self.type_map_ = {0: "int64", 1: "float32"}
        self.lod_tensor_set_ = set()
B
barrierye 已提交
463 464 465
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
B
barrierye 已提交
466 467 468 469
            if self.feed_types_[var.alias_name] == 'float':
                self.feed_types_[var.alias_name] = 'float32'
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
B
barrierye 已提交
470
        for i, var in enumerate(model_conf.fetch_var):
B
barrierye 已提交
471 472 473 474 475
            self.fetch_types_[var.alias_name] = var.fetch_type
            if self.fetch_types_[var.alias_name] == 'float':
                self.fetch_types_[var.alias_name] = 'float32'
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
B
barrierye 已提交
476 477 478 479 480 481 482 483 484 485

    def _unpack_request(self, request):
        fetch_names = list(request.fetch_var_names)
        feed_batch = []
        for feed_inst in request.feed_insts:
            feed_dict = {}
            for idx, name in enumerate(feed_inst.names):
                data = feed_inst.data[idx]
                itype = self.type_map_[self.feed_types_[name]]
                feed_dict[name] = np.frombuffer(data, dtype=itype)
B
barrierye 已提交
486
            feed_batch.append(feed_dict)
B
barrierye 已提交
487 488
        return feed_batch, fetch_names

B
barrierye 已提交
489
    def _pack_resp_package(self, result, fetch_names):
B
barrierye 已提交
490 491 492
        resp = gserver_general_model_service_pb2.Response()
        inst = gserver_general_model_service_pb2.Inst()
        for name in fetch_names:
B
barrierye 已提交
493
            inst.names.append(name)
B
barrierye 已提交
494
            inst.data.append(result[name].tobytes())
B
barrierye 已提交
495 496 497 498 499 500 501 502
            inst.shape.append(
                np.array(
                    result[name].shape, dtype="int32").tobytes())
            if name in self.lod_tensor_set_:
                inst.lod.append(result["{}.lod".format(name)].tobytes())
            else:
                # TODO
                inst.lod.append(bytes(0))
B
barrierye 已提交
503 504 505 506 507 508
        resp.fetch_insts.append(inst)
        return resp

    def inference(self, request, context):
        feed_dict, fetch_names = self._unpack_request(request)
        data = self.bclient_.predict(feed=feed_dict, fetch=fetch_names)
B
barrierye 已提交
509
        return self._pack_resp_package(data, fetch_names)
B
barrierye 已提交
510 511 512 513


class GServer(object):
    def __init__(self, worker_num=2):
B
barrierye 已提交
514
        self.bserver_ = Server()
B
barrierye 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        self.worker_num_ = worker_num

    def set_op_sequence(self, op_seq):
        self.bserver_.set_op_sequence(op_seq)

    def load_model_config(self, model_config_path):
        if not isinstance(model_config_path, str):
            raise Exception("GServer only supports multi-model temporarily")
        self.bserver_.load_model_config(model_config_path)
        self.model_config_path_ = model_config_path

    def prepare_server(self, workdir=None, port=9292, device="cpu"):
        default_port = 12000
        self.port_list_ = []
        for i in range(1000):
B
barrierye 已提交
530 531
            if default_port + i != port and self._port_is_available(default_port
                                                                    + i):
B
barrierye 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
                self.port_list_.append(default_port + i)
                break
        self.bserver_.prepare_server(
            workdir=workdir, port=self.port_list_[0], device=device)
        self.gport_ = port

    def _launch_brpc_service(self, bserver):
        bserver.run_server()

    def _port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        return result != 0

    def run_server(self):
        p_bserver = Process(
B
barrierye 已提交
549
            target=self._launch_brpc_service, args=(self.bserver_, ))
B
barrierye 已提交
550 551 552
        p_bserver.start()
        server = grpc.server(
            futures.ThreadPoolExecutor(max_workers=self.worker_num_))
B
barrierye 已提交
553
        gserver_general_model_service_pb2_grpc.add_GServerGeneralModelServiceServicer_to_server(
B
barrierye 已提交
554
            GServerService(self.model_config_path_,
B
barrierye 已提交
555
                           ["0.0.0.0:{}".format(self.port_list_[0])]), server)
B
barrierye 已提交
556 557
        server.add_insecure_port('[::]:{}'.format(self.gport_))
        server.start()
B
barrierye 已提交
558 559
        p_bserver.join()
        server.wait_for_termination()