__init__.py 16.8 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

G
guru4elephant 已提交
16
import os
17 18 19
from .proto import server_configure_pb2 as server_sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
M
MRXLT 已提交
20
import tarfile
M
MRXLT 已提交
21
import socket
M
MRXLT 已提交
22
import paddle_serving_server as paddle_serving_server
23
from .version import serving_server_version
M
MRXLT 已提交
24
from contextlib import closing
B
barrierye 已提交
25
import collections
M
MRXLT 已提交
26

G
guru4elephant 已提交
27 28 29

class OpMaker(object):
    def __init__(self):
30
        self.op_dict = {
M
MRXLT 已提交
31 32 33 34 35 36
            "general_infer": "GeneralInferOp",
            "general_reader": "GeneralReaderOp",
            "general_response": "GeneralResponseOp",
            "general_text_reader": "GeneralTextReaderOp",
            "general_text_response": "GeneralTextResponseOp",
            "general_single_kv": "GeneralSingleKVOp",
W
wangjiawei04 已提交
37
            "general_dist_kv_infer": "GeneralDistKVInferOp",
W
wangjiawei04 已提交
38
            "general_dist_kv_quant_infer": "GeneralDistKVQuantInferOp",
G
guru4elephant 已提交
39
            "general_copy": "GeneralCopyOp"
40
        }
B
barrierye 已提交
41
        self.node_name_suffix_ = collections.defaultdict(int)
G
guru4elephant 已提交
42

B
barrierye 已提交
43
    def create(self, node_type, engine_name=None, inputs=[], outputs=[]):
B
barrierye 已提交
44 45 46
        if node_type not in self.op_dict:
            raise Exception("Op type {} is not supported right now".format(
                node_type))
G
guru4elephant 已提交
47
        node = server_sdk.DAGNode()
B
barrierye 已提交
48 49 50 51 52 53 54 55
        # node.name will be used as the infer engine name
        if engine_name:
            node.name = engine_name
        else:
            node.name = '{}_{}'.format(node_type,
                                       self.node_name_suffix_[node_type])
            self.node_name_suffix_[node_type] += 1

B
barrierye 已提交
56
        node.type = self.op_dict[node_type]
B
barrierye 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69
        if inputs:
            for dep_node_str in inputs:
                dep_node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(dep_node_str, dep_node)
                dep = server_sdk.DAGNodeDependency()
                dep.name = dep_node.name
                dep.mode = "RO"
                node.dependencies.extend([dep])
        # Because the return value will be used as the key value of the
        # dict, and the proto object is variable which cannot be hashed,
        # so it is processed into a string. This has little effect on
        # overall efficiency.
        return google.protobuf.text_format.MessageToString(node)
G
guru4elephant 已提交
70

M
MRXLT 已提交
71

G
guru4elephant 已提交
72 73 74 75 76 77
class OpSeqMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        self.workflow.workflow_type = "Sequence"

B
barrierye 已提交
78 79 80 81 82 83 84
    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        if len(node.dependencies) > 1:
            raise Exception(
                'Set more than one predecessor for op in OpSeqMaker is not allowed.'
            )
G
guru4elephant 已提交
85
        if len(self.workflow.nodes) >= 1:
B
barrierye 已提交
86
            if len(node.dependencies) == 0:
B
barrierye 已提交
87 88 89 90
                dep = server_sdk.DAGNodeDependency()
                dep.name = self.workflow.nodes[-1].name
                dep.mode = "RO"
                node.dependencies.extend([dep])
B
barrierye 已提交
91 92 93 94 95 96
            elif len(node.dependencies) == 1:
                if node.dependencies[0].name != self.workflow.nodes[-1].name:
                    raise Exception(
                        'You must add op in order in OpSeqMaker. The previous op is {}, but the current op is followed by {}.'.
                        format(node.dependencies[0].name, self.workflow.nodes[
                            -1].name))
G
guru4elephant 已提交
97 98 99 100 101 102 103
        self.workflow.nodes.extend([node])

    def get_op_sequence(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf

M
MRXLT 已提交
104

B
barrierye 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class OpGraphMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        # Currently, SDK only supports "Sequence"
        self.workflow.workflow_type = "Sequence"

    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        self.workflow.nodes.extend([node])

    def get_op_graph(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


G
guru4elephant 已提交
123 124 125 126 127
class Server(object):
    def __init__(self):
        self.server_handle_ = None
        self.infer_service_conf = None
        self.model_toolkit_conf = None
G
guru4elephant 已提交
128
        self.resource_conf = None
129
        self.memory_optimization = False
M
MRXLT 已提交
130
        self.ir_optimization = False
131
        self.model_conf = None
G
guru4elephant 已提交
132 133 134 135
        self.workflow_fn = "workflow.prototxt"
        self.resource_fn = "resource.prototxt"
        self.infer_service_fn = "infer_service.prototxt"
        self.model_toolkit_fn = "model_toolkit.prototxt"
136
        self.general_model_config_fn = "general_model.prototxt"
W
wangjiawei04 已提交
137
        self.cube_config_fn = "cube.conf"
G
guru4elephant 已提交
138 139
        self.workdir = ""
        self.max_concurrency = 0
M
MRXLT 已提交
140
        self.num_threads = 4
G
guru4elephant 已提交
141 142
        self.port = 8080
        self.reload_interval_s = 10
M
MRXLT 已提交
143
        self.max_body_size = 64 * 1024 * 1024
M
MRXLT 已提交
144 145
        self.module_path = os.path.dirname(paddle_serving_server.__file__)
        self.cur_path = os.getcwd()
M
MRXLT 已提交
146
        self.use_local_bin = False
M
MRXLT 已提交
147
        self.mkl_flag = False
B
barrierye 已提交
148
        self.model_config_paths = None  # for multi-model in a workflow
G
guru4elephant 已提交
149 150 151 152 153 154 155

    def set_max_concurrency(self, concurrency):
        self.max_concurrency = concurrency

    def set_num_threads(self, threads):
        self.num_threads = threads

M
MRXLT 已提交
156 157 158 159 160 161 162 163
    def set_max_body_size(self, body_size):
        if body_size >= self.max_body_size:
            self.max_body_size = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )

G
guru4elephant 已提交
164 165 166 167 168
    def set_port(self, port):
        self.port = port

    def set_reload_interval(self, interval):
        self.reload_interval_s = interval
G
guru4elephant 已提交
169 170 171 172

    def set_op_sequence(self, op_seq):
        self.workflow_conf = op_seq

B
barrierye 已提交
173 174 175
    def set_op_graph(self, op_graph):
        self.workflow_conf = op_graph

176 177 178
    def set_memory_optimize(self, flag=False):
        self.memory_optimization = flag

M
MRXLT 已提交
179 180 181
    def set_ir_optimize(self, flag=False):
        self.ir_optimization = flag

M
MRXLT 已提交
182 183 184 185
    def check_local_bin(self):
        if "SERVING_BIN" in os.environ:
            self.use_local_bin = True
            self.bin_path = os.environ["SERVING_BIN"]
M
MRXLT 已提交
186

B
barrierye 已提交
187
    def _prepare_engine(self, model_config_paths, device):
G
guru4elephant 已提交
188 189
        if self.model_toolkit_conf == None:
            self.model_toolkit_conf = server_sdk.ModelToolkitConf()
190

B
barrierye 已提交
191 192 193 194 195 196 197 198 199 200 201
        for engine_name, model_config_path in model_config_paths.items():
            engine = server_sdk.EngineDesc()
            engine.name = engine_name
            engine.reloadable_meta = model_config_path + "/fluid_time_file"
            os.system("touch {}".format(engine.reloadable_meta))
            engine.reloadable_type = "timestamp_ne"
            engine.runtime_thread_num = 0
            engine.batch_infer_size = 0
            engine.enable_batch_align = 0
            engine.model_data_path = model_config_path
            engine.enable_memory_optimization = self.memory_optimization
M
MRXLT 已提交
202
            engine.enable_ir_optimization = self.ir_optimization
B
barrierye 已提交
203 204 205 206 207 208 209 210 211
            engine.static_optimization = False
            engine.force_update_static_cache = False

            if device == "cpu":
                engine.type = "FLUID_CPU_ANALYSIS_DIR"
            elif device == "gpu":
                engine.type = "FLUID_GPU_ANALYSIS_DIR"

            self.model_toolkit_conf.engines.extend([engine])
G
guru4elephant 已提交
212 213 214 215 216 217 218 219 220 221 222 223

    def _prepare_infer_service(self, port):
        if self.infer_service_conf == None:
            self.infer_service_conf = server_sdk.InferServiceConf()
            self.infer_service_conf.port = port
            infer_service = server_sdk.InferService()
            infer_service.name = "GeneralModelService"
            infer_service.workflows.extend(["workflow1"])
            self.infer_service_conf.services.extend([infer_service])

    def _prepare_resource(self, workdir):
        if self.resource_conf == None:
M
MRXLT 已提交
224 225
            with open("{}/{}".format(workdir, self.general_model_config_fn),
                      "w") as fout:
226
                fout.write(str(self.model_conf))
G
guru4elephant 已提交
227
            self.resource_conf = server_sdk.ResourceConf()
W
wangjiawei04 已提交
228 229 230 231 232
            for workflow in self.workflow_conf.workflows:
                for node in workflow.nodes:
                    if "dist_kv" in node.name:
                        self.resource_conf.cube_config_path = workdir
                        self.resource_conf.cube_config_file = self.cube_config_fn
W
wangjiawei04 已提交
233 234
                        if "quant" in node.name:
                            self.resource_conf.cube_quant_bits = 8
G
guru4elephant 已提交
235
            self.resource_conf.model_toolkit_path = workdir
G
guru4elephant 已提交
236
            self.resource_conf.model_toolkit_file = self.model_toolkit_fn
237 238
            self.resource_conf.general_model_path = workdir
            self.resource_conf.general_model_file = self.general_model_config_fn
G
guru4elephant 已提交
239 240 241 242 243

    def _write_pb_str(self, filepath, pb_obj):
        with open(filepath, "w") as fout:
            fout.write(str(pb_obj))

B
barrierye 已提交
244
    def load_model_config(self, model_config_paths):
B
barrierye 已提交
245 246 247
        # At present, Serving needs to configure the model path in
        # the resource.prototxt file to determine the input and output
        # format of the workflow. To ensure that the input and output
B
barrierye 已提交
248
        # of multiple models are the same.
B
barrierye 已提交
249 250
        workflow_oi_config_path = None
        if isinstance(model_config_paths, str):
B
barrierye 已提交
251
            # If there is only one model path, use the default infer_op.
M
MRXLT 已提交
252
            # Because there are several infer_op type, we need to find
B
barrierye 已提交
253 254 255
            # it from workflow_conf.
            default_engine_names = [
                'general_infer_0', 'general_dist_kv_infer_0',
B
barrierye 已提交
256
                'general_dist_kv_quant_infer_0'
B
barrierye 已提交
257 258 259 260 261 262 263 264 265 266 267 268
            ]
            engine_name = None
            for node in self.workflow_conf.workflows[0].nodes:
                if node.name in default_engine_names:
                    engine_name = node.name
                    break
            if engine_name is None:
                raise Exception(
                    "You have set the engine_name of Op. Please use the form {op: model_path} to configure model path"
                )
            self.model_config_paths = {engine_name: model_config_paths}
            workflow_oi_config_path = self.model_config_paths[engine_name]
B
barrierye 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282
        elif isinstance(model_config_paths, dict):
            self.model_config_paths = {}
            for node_str, path in model_config_paths.items():
                node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(node_str, node)
                self.model_config_paths[node.name] = path
            print("You have specified multiple model paths, please ensure "
                  "that the input and output of multiple models are the same.")
            workflow_oi_config_path = self.model_config_paths.items()[0][1]
        else:
            raise Exception("The type of model_config_paths must be str or "
                            "dict({op: model_path}), not {}.".format(
                                type(model_config_paths)))

283
        self.model_conf = m_config.GeneralModelConfig()
B
barrierye 已提交
284 285 286
        f = open(
            "{}/serving_server_conf.prototxt".format(workflow_oi_config_path),
            'r')
287 288
        self.model_conf = google.protobuf.text_format.Merge(
            str(f.read()), self.model_conf)
G
guru4elephant 已提交
289
        # check config here
290
        # print config here
G
guru4elephant 已提交
291

M
MRXLT 已提交
292 293 294
    def use_mkl(self):
        self.mkl_flag = True

M
MRXLT 已提交
295 296
    def get_device_version(self):
        avx_flag = False
M
MRXLT 已提交
297
        mkl_flag = self.mkl_flag
M
MRXLT 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        openblas_flag = False
        r = os.system("cat /proc/cpuinfo | grep avx > /dev/null 2>&1")
        if r == 0:
            avx_flag = True
        if avx_flag:
            if mkl_flag:
                device_version = "serving-cpu-avx-mkl-"
            else:
                device_version = "serving-cpu-avx-openblas-"
        else:
            device_version = "serving-cpu-noavx-openblas-"
        return device_version

    def download_bin(self):
        os.chdir(self.module_path)
        need_download = False
        device_version = self.get_device_version()
        floder_name = device_version + serving_server_version
        tar_name = floder_name + ".tar.gz"
        bin_url = "https://paddle-serving.bj.bcebos.com/bin/" + tar_name
        self.server_path = os.path.join(self.module_path, floder_name)
319

M
MRXLT 已提交
320 321 322 323 324 325
        if not os.path.exists(self.server_path):
            print('Frist time run, downloading PaddleServing components ...')
            r = os.system('wget ' + bin_url + ' --no-check-certificate')
            if r != 0:
                if os.path.exists(tar_name):
                    os.remove(tar_name)
M
MRXLT 已提交
326 327 328
                raise SystemExit(
                    'Download failed, please check your network or permission of {}.'.
                    format(self.module_path))
M
MRXLT 已提交
329 330 331 332 333 334 335 336 337
            else:
                try:
                    print('Decompressing files ..')
                    tar = tarfile.open(tar_name)
                    tar.extractall()
                    tar.close()
                except:
                    if os.path.exists(exe_path):
                        os.remove(exe_path)
M
MRXLT 已提交
338 339 340
                    raise SystemExit(
                        'Decompressing failed, please check your permission of {} or disk space left.'.
                        foemat(self.module_path))
M
MRXLT 已提交
341 342 343 344 345
                finally:
                    os.remove(tar_name)
        os.chdir(self.cur_path)
        self.bin_path = self.server_path + "/serving"

G
guru4elephant 已提交
346
    def prepare_server(self, workdir=None, port=9292, device="cpu"):
G
guru4elephant 已提交
347 348 349
        if workdir == None:
            workdir = "./tmp"
            os.system("mkdir {}".format(workdir))
G
guru4elephant 已提交
350 351
        else:
            os.system("mkdir {}".format(workdir))
G
guru4elephant 已提交
352
        os.system("touch {}/fluid_time_file".format(workdir))
G
guru4elephant 已提交
353

M
MRXLT 已提交
354
        if not self.port_is_available(port):
M
MRXLT 已提交
355
            raise SystemExit("Prot {} is already used".format(port))
G
guru4elephant 已提交
356
        self._prepare_resource(workdir)
B
barrierye 已提交
357
        self._prepare_engine(self.model_config_paths, device)
G
guru4elephant 已提交
358
        self._prepare_infer_service(port)
M
MRXLT 已提交
359
        self.port = port
G
guru4elephant 已提交
360 361
        self.workdir = workdir

G
guru4elephant 已提交
362 363 364 365
        infer_service_fn = "{}/{}".format(workdir, self.infer_service_fn)
        workflow_fn = "{}/{}".format(workdir, self.workflow_fn)
        resource_fn = "{}/{}".format(workdir, self.resource_fn)
        model_toolkit_fn = "{}/{}".format(workdir, self.model_toolkit_fn)
G
guru4elephant 已提交
366 367 368 369 370 371

        self._write_pb_str(infer_service_fn, self.infer_service_conf)
        self._write_pb_str(workflow_fn, self.workflow_conf)
        self._write_pb_str(resource_fn, self.resource_conf)
        self._write_pb_str(model_toolkit_fn, self.model_toolkit_conf)

M
MRXLT 已提交
372
    def port_is_available(self, port):
M
MRXLT 已提交
373 374
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
375
            result = sock.connect_ex(('0.0.0.0', port))
M
MRXLT 已提交
376 377 378 379 380
        if result != 0:
            return True
        else:
            return False

G
guru4elephant 已提交
381 382
    def run_server(self):
        # just run server with system command
G
guru4elephant 已提交
383
        # currently we do not load cube
M
MRXLT 已提交
384
        self.check_local_bin()
M
MRXLT 已提交
385 386
        if not self.use_local_bin:
            self.download_bin()
G
guru4elephant 已提交
387
        else:
M
MRXLT 已提交
388
            print("Use local bin : {}".format(self.bin_path))
M
MRXLT 已提交
389 390
        command = "{} " \
                  "-enable_model_toolkit " \
G
guru4elephant 已提交
391 392 393 394 395 396 397 398 399
                  "-inferservice_path {} " \
                  "-inferservice_file {} " \
                  "-max_concurrency {} " \
                  "-num_threads {} " \
                  "-port {} " \
                  "-reload_interval_s {} " \
                  "-resource_path {} " \
                  "-resource_file {} " \
                  "-workflow_path {} " \
M
MRXLT 已提交
400
                  "-workflow_file {} " \
M
MRXLT 已提交
401 402
                  "-bthread_concurrency {} " \
                  "-max_body_size {} ".format(
M
MRXLT 已提交
403
                      self.bin_path,
G
guru4elephant 已提交
404 405 406 407 408 409 410 411
                      self.workdir,
                      self.infer_service_fn,
                      self.max_concurrency,
                      self.num_threads,
                      self.port,
                      self.reload_interval_s,
                      self.workdir,
                      self.resource_fn,
M
MRXLT 已提交
412 413
                      self.workdir,
                      self.workflow_fn,
M
MRXLT 已提交
414 415
                      self.num_threads,
                      self.max_body_size)
W
wangjiawei04 已提交
416
        print("Going to Run Command")
G
guru4elephant 已提交
417
        print(command)
G
guru4elephant 已提交
418
        os.system(command)