general_reader_op.cpp 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_reader_op.h"
16 17 18 19
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
20
#include "core/general-server/op/general_infer_helper.h"
21 22
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
G
guru4elephant 已提交
23
#include "core/util/include/timer.h"
24 25 26 27 28

namespace baidu {
namespace paddle_serving {
namespace serving {

G
guru4elephant 已提交
29
using baidu::paddle_serving::Timer;
30 31 32 33 34
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
H
HexToString 已提交
35
enum ProtoDataType { P_INT64, P_FLOAT32, P_INT32, P_STRING };
36 37 38 39
int conf_check(const Request *req,
               const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
  int var_num = req->insts(0).tensor_array_size();
  if (var_num != model_config->_feed_type.size()) {
B
barriery 已提交
40 41 42
    LOG(ERROR) << "feed var number not match: model config["
               << model_config->_feed_type.size() << "] vs. actual[" << var_num
               << "]";
43 44
    return -1;
  }
45 46 47

  VLOG(2) << "fetch var num in reader op: " << req->fetch_var_names_size();

48
  for (int i = 0; i < var_num; ++i) {
H
HexToString 已提交
49
    const Tensor &tensor = req->insts(0).tensor_array(i);
50
    if (model_config->_feed_type[i] !=
H
HexToString 已提交
51
        tensor.elem_type()) {
52 53 54 55
      LOG(ERROR) << "feed type not match.";
      return -1;
    }
    if (model_config->_feed_shape[i].size() ==
H
HexToString 已提交
56
        tensor.shape_size()) {
57
      for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) {
H
HexToString 已提交
58
        tensor.shape(j);
59
        if (model_config->_feed_shape[i][j] !=
H
HexToString 已提交
60
            tensor.shape(j)) {
61 62 63 64 65 66 67 68 69 70 71 72 73
          LOG(ERROR) << "feed shape not match.";
          return -1;
        }
      }
    } else {
      LOG(ERROR) << "feed shape not match.";
      return -1;
    }
  }
  return 0;
}

int GeneralReaderOp::inference() {
H
HexToString 已提交
74
  // read request from client
W
wangjiawei04 已提交
75
  const Request *req = dynamic_cast<const Request *>(get_request_message());
W
wangjiawei04 已提交
76 77 78 79
  uint64_t log_id = req->log_id();
  int input_var_num = 0;
  std::vector<int64_t> elem_type;
  std::vector<int64_t> elem_size;
H
HexToString 已提交
80
  std::vector<int64_t> databuf_size;
H
HexToString 已提交
81 82

  GeneralBlob *res = mutable_data<GeneralBlob>();
H
HexToString 已提交
83 84
  TensorVector *out = &(res->tensor_vector);
  
H
HexToString 已提交
85 86 87 88 89 90 91 92
  res->SetLogId(log_id);
  if (!res) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed get op tls reader object output";
  }

  Timer timeline;
  int64_t start = timeline.TimeStampUS();
W
wangjiawei04 已提交
93
  int var_num = req->insts(0).tensor_array_size();
H
HexToString 已提交
94

H
HexToString 已提交
95
  VLOG(2) << "(logid=" << log_id << ") var num: " << var_num
H
HexToString 已提交
96 97
          << ") start to call load general model_conf op";

W
wangjiawei04 已提交
98 99
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
H
HexToString 已提交
100 101

  VLOG(2) << "(logid=" << log_id << ") get resource pointer done.";
H
HexToString 已提交
102
  //get the first InferOP's model_config as ReaderOp's model_config by default.
W
wangjiawei04 已提交
103
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
H
HexToString 已提交
104
      resource.get_general_model_config().front();
H
HexToString 已提交
105 106 107 108 109 110 111 112 113 114 115 116

  // TODO(guru4elephant): how to do conditional check?
  /*
  int ret = conf_check(req, model_config);
  if (ret != 0) {
    LOG(ERROR) << "model conf of server:";
    resource.print_general_model_config(model_config);
    return 0;
  }
  */
  // package tensor

W
wangjiawei04 已提交
117 118
  elem_type.resize(var_num);
  elem_size.resize(var_num);
H
HexToString 已提交
119
  databuf_size.resize(var_num);
H
HexToString 已提交
120
  // prepare basic information for input
H
HexToString 已提交
121 122 123
  // specify the memory needed for output tensor_vector
  // fill the data into output general_blob
  int data_len = 0;
W
wangjiawei04 已提交
124
  for (int i = 0; i < var_num; ++i) {
H
HexToString 已提交
125
    paddle::PaddleTensor lod_tensor;
H
HexToString 已提交
126 127
    const Tensor &tensor = req->insts(0).tensor_array(i);
    data_len = 0;
H
HexToString 已提交
128
    elem_type[i] = tensor.elem_type();
H
HexToString 已提交
129
    VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i];
H
HexToString 已提交
130
    if (elem_type[i] == P_INT64) {  // int64
H
HexToString 已提交
131 132
      elem_size[i] = sizeof(int64_t);
      lod_tensor.dtype = paddle::PaddleDType::INT64;
H
HexToString 已提交
133
      data_len = tensor.int64_data_size();
H
HexToString 已提交
134
    } else if (elem_type[i] == P_FLOAT32) {
H
HexToString 已提交
135 136
      elem_size[i] = sizeof(float);
      lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
H
HexToString 已提交
137
      data_len = tensor.float_data_size();
H
HexToString 已提交
138
    } else if (elem_type[i] == P_INT32) {
H
HexToString 已提交
139 140
      elem_size[i] = sizeof(int32_t);
      lod_tensor.dtype = paddle::PaddleDType::INT32;
H
HexToString 已提交
141 142 143 144 145 146 147 148 149
      data_len = tensor.int_data_size();
    } else if (elem_type[i] == P_STRING) {
      //use paddle::PaddleDType::UINT8 as for String.
      elem_size[i] = sizeof(uint8_t);
      lod_tensor.dtype = paddle::PaddleDType::UINT8;
      //this is for vector<String>, cause the databuf_size != vector<String>.size()*sizeof(char);
      for (int idx = 0; idx < tensor.data_size(); idx++) {
        data_len += tensor.data()[idx].length();
      }
H
HexToString 已提交
150 151
    }
    // implement lod tensor here
H
HexToString 已提交
152 153
    // only support 1-D lod
    // TODO:support 2-D lod
H
HexToString 已提交
154
    if (tensor.lod_size() > 0) {
H
HexToString 已提交
155 156
      VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is lod_tensor";
      lod_tensor.lod.resize(1);
H
HexToString 已提交
157 158
      for (int k = 0; k < tensor.lod_size(); ++k) {
        lod_tensor.lod[0].push_back(tensor.lod(k));
W
wangjiawei04 已提交
159 160
      }
    }
H
HexToString 已提交
161

H
HexToString 已提交
162 163
    for (int k = 0; k < tensor.shape_size(); ++k) {
      int dim = tensor.shape(k);
H
HexToString 已提交
164 165 166
      VLOG(2) << "(logid=" << log_id << ") shape for var[" << i
              << "]: " << dim;
      lod_tensor.shape.push_back(dim);
H
HexToString 已提交
167
    }
H
HexToString 已提交
168 169
    lod_tensor.name = model_config->_feed_name[i];
    out->push_back(lod_tensor);
H
HexToString 已提交
170

H
HexToString 已提交
171 172 173 174 175 176 177 178
    
    VLOG(2) << "(logid=" << log_id << ") tensor size for var[" << i
            << "]: " << data_len;
    databuf_size[i] = data_len * elem_size[i];
    out->at(i).data.Resize(data_len * elem_size[i]);
    VLOG(2) << "(logid=" << log_id << ") var[" << i
            << "] is lod_tensor and len=" << out->at(i).lod[0].back();
    
H
HexToString 已提交
179
    if (elem_type[i] == P_INT64) {
H
HexToString 已提交
180 181
      int64_t *dst_ptr = static_cast<int64_t *>(out->at(i).data.data());
      VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
H
HexToString 已提交
182
              << "] is " << tensor.int64_data(0);
H
HexToString 已提交
183
      if (!dst_ptr) {
H
HexToString 已提交
184 185 186
        LOG(ERROR) << "dst_ptr is nullptr";
            return -1;
      }
H
HexToString 已提交
187
      memcpy(dst_ptr, tensor.int64_data().data(),databuf_size[i]);
H
HexToString 已提交
188
      /*
H
HexToString 已提交
189
      int elem_num = tensor.int64_data_size();
W
wangjiawei04 已提交
190
      for (int k = 0; k < elem_num; ++k) {
H
HexToString 已提交
191
        dst_ptr[k] = tensor.int64_data(k);
W
wangjiawei04 已提交
192
      }
H
HexToString 已提交
193
      */
H
HexToString 已提交
194
    } else if (elem_type[i] == P_FLOAT32) {
H
HexToString 已提交
195 196
      float *dst_ptr = static_cast<float *>(out->at(i).data.data());
      VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
H
HexToString 已提交
197
              << "] is " << tensor.float_data(0);
H
HexToString 已提交
198
      if (!dst_ptr) {
H
HexToString 已提交
199 200 201
        LOG(ERROR) << "dst_ptr is nullptr";
            return -1;
      }
H
HexToString 已提交
202 203
      memcpy(dst_ptr, tensor.float_data().data(),databuf_size[i]);
      /*int elem_num = tensor.float_data_size();
W
wangjiawei04 已提交
204
      for (int k = 0; k < elem_num; ++k) {
H
HexToString 已提交
205
        dst_ptr[k] = tensor.float_data(k);
H
HexToString 已提交
206
      }*/
H
HexToString 已提交
207
    } else if (elem_type[i] == P_INT32) {
H
HexToString 已提交
208 209
      int32_t *dst_ptr = static_cast<int32_t *>(out->at(i).data.data());
      VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
H
HexToString 已提交
210
              << "] is " << tensor.int_data(0);
H
HexToString 已提交
211
      if (!dst_ptr) {
H
HexToString 已提交
212 213 214
        LOG(ERROR) << "dst_ptr is nullptr";
            return -1;
      }
H
HexToString 已提交
215
      memcpy(dst_ptr, tensor.int_data().data(),databuf_size[i]);
H
HexToString 已提交
216
      /*
H
HexToString 已提交
217
      int elem_num = tensor.int_data_size();
H
HexToString 已提交
218
      for (int k = 0; k < elem_num; ++k) {
H
HexToString 已提交
219
        dst_ptr[k] = tensor.int_data(k);
H
HexToString 已提交
220
      }
H
HexToString 已提交
221
      */
H
HexToString 已提交
222 223 224
    } else if (elem_type[i] == P_STRING) {
      std::string *dst_ptr = static_cast<std::string *>(out->at(i).data.data());
      VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
H
HexToString 已提交
225
              << "] is " << tensor.data(0);
H
HexToString 已提交
226 227 228 229
      if (!dst_ptr) {
        LOG(ERROR) << "dst_ptr is nullptr";
            return -1;
      }
H
HexToString 已提交
230
      int elem_num = tensor.data_size();
W
wangjiawei04 已提交
231
      for (int k = 0; k < elem_num; ++k) {
H
HexToString 已提交
232
        dst_ptr[k] = tensor.data(k);
W
wangjiawei04 已提交
233 234 235
      }
    }
  }
H
HexToString 已提交
236 237 238 239 240 241 242 243 244 245

  VLOG(2) << "(logid=" << log_id << ") output size: " << out->size();
  timeline.Pause();
  int64_t end = timeline.TimeStampUS();
  res->p_size = 0;
  res->_batch_size = 1;
  AddBlobInfo(res, start);
  AddBlobInfo(res, end);

  VLOG(2) << "(logid=" << log_id << ") read data from client success";
246 247 248 249 250
  return 0;
}
DEFINE_OP(GeneralReaderOp);
}  // namespace serving
}  // namespace paddle_serving
H
HexToString 已提交
251
}  // namespace baidu