Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
53413a48
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
53413a48
编写于
4月 01, 2021
作者:
H
HexToString
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete ununsed code
上级
7efb4a3b
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
64 addition
and
506 deletion
+64
-506
CMakeLists.txt
CMakeLists.txt
+28
-23
cmake/external/zlib.cmake
cmake/external/zlib.cmake
+5
-1
core/general-server/CMakeLists.txt
core/general-server/CMakeLists.txt
+3
-1
core/general-server/op/CMakeLists.txt
core/general-server/op/CMakeLists.txt
+14
-1
core/general-server/op/general_infer_op.cpp
core/general-server/op/general_infer_op.cpp
+0
-2
core/general-server/op/general_reader_op.cpp
core/general-server/op/general_reader_op.cpp
+11
-5
core/general-server/op/general_ysl_op.cpp
core/general-server/op/general_ysl_op.cpp
+0
-376
core/general-server/op/general_ysl_op.h
core/general-server/op/general_ysl_op.h
+0
-85
core/predictor/framework/infer.h
core/predictor/framework/infer.h
+0
-9
python/paddle_serving_server/__init__.py
python/paddle_serving_server/__init__.py
+2
-2
python/paddle_serving_server/serve.py
python/paddle_serving_server/serve.py
+1
-1
未找到文件。
CMakeLists.txt
浏览文件 @
53413a48
...
...
@@ -27,16 +27,7 @@ message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: "
"
${
CMAKE_CXX_COMPILER_ID
}
${
CMAKE_CXX_COMPILER_VERSION
}
"
)
message
(
STATUS
"C compiler:
${
CMAKE_C_COMPILER
}
, version: "
"
${
CMAKE_C_COMPILER_ID
}
${
CMAKE_C_COMPILER_VERSION
}
"
)
SET
(
OPENCV_DIR
""
CACHE PATH
"Location of libraries"
)
if
(
NOT DEFINED OPENCV_DIR
)
message
(
FATAL_ERROR
"please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv"
)
endif
()
if
(
WIN32
)
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/build/ NO_DEFAULT_PATH
)
else
()
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/share/OpenCV NO_DEFAULT_PATH
)
endif
()
include_directories
(
${
OpenCV_INCLUDE_DIRS
}
)
find_package
(
Git REQUIRED
)
find_package
(
Threads REQUIRED
)
find_package
(
CUDA QUIET
)
...
...
@@ -55,19 +46,33 @@ set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING
set
(
THIRD_PARTY_BUILD_TYPE Release
)
option
(
WITH_AVX
"Compile Paddle Serving with AVX intrinsics"
OFF
)
option
(
WITH_MKL
"Compile Paddle Serving with MKL support."
OFF
)
option
(
WITH_GPU
"Compile Paddle Serving with NVIDIA GPU"
OFF
)
option
(
WITH_LITE
"Compile Paddle Serving with Paddle Lite Engine"
OFF
)
option
(
WITH_XPU
"Compile Paddle Serving with Baidu Kunlun"
OFF
)
option
(
WITH_PYTHON
"Compile Paddle Serving with Python"
ON
)
option
(
CLIENT
"Compile Paddle Serving Client"
OFF
)
option
(
SERVER
"Compile Paddle Serving Server"
OFF
)
option
(
APP
"Compile Paddle Serving App package"
OFF
)
option
(
WITH_ELASTIC_CTR
"Compile ELASITC-CTR solution"
OFF
)
option
(
PACK
"Compile for whl"
OFF
)
option
(
WITH_TRT
"Compile Paddle Serving with TRT"
OFF
)
option
(
PADDLE_ON_INFERENCE
"Compile for encryption"
ON
)
option
(
WITH_AVX
"Compile Paddle Serving with AVX intrinsics"
OFF
)
option
(
WITH_MKL
"Compile Paddle Serving with MKL support."
OFF
)
option
(
WITH_GPU
"Compile Paddle Serving with NVIDIA GPU"
OFF
)
option
(
WITH_LITE
"Compile Paddle Serving with Paddle Lite Engine"
OFF
)
option
(
WITH_XPU
"Compile Paddle Serving with Baidu Kunlun"
OFF
)
option
(
WITH_PYTHON
"Compile Paddle Serving with Python"
ON
)
option
(
CLIENT
"Compile Paddle Serving Client"
OFF
)
option
(
SERVER
"Compile Paddle Serving Server"
OFF
)
option
(
APP
"Compile Paddle Serving App package"
OFF
)
option
(
WITH_ELASTIC_CTR
"Compile ELASITC-CTR solution"
OFF
)
option
(
PACK
"Compile for whl"
OFF
)
option
(
WITH_TRT
"Compile Paddle Serving with TRT"
OFF
)
option
(
PADDLE_ON_INFERENCE
"Compile for encryption"
ON
)
option
(
WITH_OPENCV
"Compile Paddle Serving with OPENCV"
OFF
)
if
(
WITH_OPENCV
)
SET
(
OPENCV_DIR
""
CACHE PATH
"Location of libraries"
)
if
(
NOT DEFINED OPENCV_DIR
)
message
(
FATAL_ERROR
"please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv"
)
endif
()
if
(
WIN32
)
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/build/ NO_DEFAULT_PATH
)
else
()
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/share/OpenCV NO_DEFAULT_PATH
)
endif
()
include_directories
(
${
OpenCV_INCLUDE_DIRS
}
)
endif
()
if
(
PADDLE_ON_INFERENCE
)
add_definitions
(
-DPADDLE_ON_INFERENCE
)
...
...
cmake/external/zlib.cmake
100644 → 100755
浏览文件 @
53413a48
...
...
@@ -54,7 +54,11 @@ ELSE(WIN32)
SET
(
ZLIB_LIBRARIES
"
${
ZLIB_INSTALL_DIR
}
/lib/libz.a"
CACHE FILEPATH
"zlib library."
FORCE
)
ENDIF
(
WIN32
)
#ADD_LIBRARY(zlib STATIC IMPORTED GLOBAL)
IF
(
WITH_OPENCV
)
ELSE
()
ADD_LIBRARY
(
zlib STATIC IMPORTED GLOBAL
)
ENDIF
()
SET_PROPERTY
(
TARGET zlib PROPERTY IMPORTED_LOCATION
${
ZLIB_LIBRARIES
}
)
ADD_DEPENDENCIES
(
zlib extern_zlib
)
...
...
core/general-server/CMakeLists.txt
浏览文件 @
53413a48
...
...
@@ -28,7 +28,9 @@ endif()
target_link_libraries
(
serving -Wl,--whole-archive fluid_cpu_engine
-Wl,--no-whole-archive
)
target_link_libraries
(
serving
${
OpenCV_LIBS
}
)
if
(
WITH_OPENCV
)
target_link_libraries
(
serving
${
OpenCV_LIBS
}
)
endif
()
target_link_libraries
(
serving paddle_fluid
${
paddle_depend_libs
}
)
target_link_libraries
(
serving brpc
)
target_link_libraries
(
serving protobuf
)
...
...
core/general-server/op/CMakeLists.txt
浏览文件 @
53413a48
FILE
(
GLOB op_srcs
${
CMAKE_CURRENT_LIST_DIR
}
/*.cpp
${
CMAKE_CURRENT_LIST_DIR
}
/../../predictor/tools/quant.cpp
${
CMAKE_CURRENT_LIST_DIR
}
/../../predictor/tools/ocrtools/*.cpp
)
FILE
(
GLOB op_srcs
${
CMAKE_CURRENT_LIST_DIR
}
/*.cpp
${
CMAKE_CURRENT_LIST_DIR
}
/../../predictor/tools/quant.cpp
)
if
(
WITH_OPENCV
)
FILE
(
GLOB ocrtools_srcs
${
CMAKE_CURRENT_LIST_DIR
}
/../../predictor/tools/ocrtools/*.cpp
)
LIST
(
APPEND op_srcs
${
ocrtools_srcs
}
)
else
()
set
(
EXCLUDE_DIR
"general_detection_op.cpp"
)
foreach
(
TMP_PATH
${
op_srcs
}
)
string
(
FIND
${
TMP_PATH
}
${
EXCLUDE_DIR
}
EXCLUDE_DIR_FOUND
)
if
(
NOT
${
EXCLUDE_DIR_FOUND
}
EQUAL -1
)
list
(
REMOVE_ITEM op_srcs
${
TMP_PATH
}
)
break
()
endif
()
endforeach
(
TMP_PATH
)
endif
()
LIST
(
APPEND serving_srcs
${
op_srcs
}
)
core/general-server/op/general_infer_op.cpp
浏览文件 @
53413a48
...
...
@@ -37,7 +37,6 @@ using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int
GeneralInferOp
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
std
::
cout
<<
"I am GeneralInferOp"
<<
std
::
endl
;
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
...
...
@@ -88,7 +87,6 @@ int GeneralInferOp::inference() {
<<
") Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
std
::
cout
<<
"I am GeneralInferOp finish"
<<
std
::
endl
;
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
...
...
core/general-server/op/general_reader_op.cpp
浏览文件 @
53413a48
...
...
@@ -70,7 +70,7 @@ int conf_check(const Request *req,
}
int
GeneralReaderOp
::
inference
()
{
// read
e
request from client
// read request from client
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
uint64_t
log_id
=
req
->
log_id
();
int
input_var_num
=
0
;
...
...
@@ -100,7 +100,7 @@ int GeneralReaderOp::inference() {
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") get resource pointer done."
;
//get the first InferOP's model_config as ReaderOp's model_config by default.
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
()
[
0
]
;
resource
.
get_general_model_config
()
.
front
()
;
// TODO(guru4elephant): how to do conditional check?
/*
...
...
@@ -183,10 +183,13 @@ int GeneralReaderOp::inference() {
LOG
(
ERROR
)
<<
"dst_ptr is nullptr"
;
return
-
1
;
}
memcpy
(
dst_ptr
,
req
->
insts
(
0
).
tensor_array
(
i
).
int64_data
().
data
(),
databuf_size
[
i
]);
/*
int elem_num = req->insts(0).tensor_array(i).int64_data_size();
for (int k = 0; k < elem_num; ++k) {
dst_ptr[k] = req->insts(0).tensor_array(i).int64_data(k);
}
*/
}
else
if
(
elem_type
[
i
]
==
P_FLOAT32
)
{
float
*
dst_ptr
=
static_cast
<
float
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") first element data in var["
<<
i
...
...
@@ -195,11 +198,11 @@ int GeneralReaderOp::inference() {
LOG
(
ERROR
)
<<
"dst_ptr is nullptr"
;
return
-
1
;
}
//memcpy(dst_ptr,req->insts(0).tensor_array(i).float_
data(),databuf_size[i]);
int
elem_num
=
req
->
insts
(
0
).
tensor_array
(
i
).
float_data_size
();
memcpy
(
dst_ptr
,
req
->
insts
(
0
).
tensor_array
(
i
).
float_data
().
data
(),
databuf_size
[
i
]);
/*
int elem_num = req->insts(0).tensor_array(i).float_data_size();
for (int k = 0; k < elem_num; ++k) {
dst_ptr[k] = req->insts(0).tensor_array(i).float_data(k);
}
}
*/
}
else
if
(
elem_type
[
i
]
==
P_INT32
)
{
int32_t
*
dst_ptr
=
static_cast
<
int32_t
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") first element data in var["
<<
i
...
...
@@ -208,10 +211,13 @@ int GeneralReaderOp::inference() {
LOG
(
ERROR
)
<<
"dst_ptr is nullptr"
;
return
-
1
;
}
memcpy
(
dst_ptr
,
req
->
insts
(
0
).
tensor_array
(
i
).
int_data
().
data
(),
databuf_size
[
i
]);
/*
int elem_num = req->insts(0).tensor_array(i).int_data_size();
for (int k = 0; k < elem_num; ++k) {
dst_ptr[k] = req->insts(0).tensor_array(i).int_data(k);
}
*/
}
else
if
(
elem_type
[
i
]
==
P_STRING
)
{
std
::
string
*
dst_ptr
=
static_cast
<
std
::
string
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") first element data in var["
<<
i
...
...
core/general-server/op/general_ysl_op.cpp
已删除
100755 → 0
浏览文件 @
7efb4a3b
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_ysl_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
/*
#include "opencv2/imgcodecs/legacy/constants_c.h"
#include "opencv2/imgproc/types_c.h"
*/
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FetchInst
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralYSLOp
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
std
::
cout
<<
"i am GeneralYSLOp"
<<
std
::
endl
;
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"input_blob is nullptr,error"
;
return
-
1
;
}
uint64_t
log_id
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
if
(
!
output_blob
)
{
LOG
(
ERROR
)
<<
"output_blob is nullptr,error"
;
return
-
1
;
}
output_blob
->
SetLogId
(
log_id
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
//for input_data = string(ocr-base64,TensorVector.size == 1)
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
_batch_size
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") input batch size: "
<<
batch_size
;
output_blob
->
_batch_size
=
batch_size
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") infer batch size: "
<<
batch_size
;
std
::
vector
<
int
>
input_shape
;
int
in_num
=
0
;
void
*
databuf_data
=
NULL
;
char
*
databuf_char
=
NULL
;
size_t
databuf_size
=
0
;
std
::
string
*
input_ptr
=
static_cast
<
std
::
string
*>
(
in
->
at
(
0
).
data
.
data
());
std
::
string
base64str
=
input_ptr
[
0
];
float
ratio_h
{};
float
ratio_w
{};
cv
::
Mat
img
=
Base2Mat
(
base64str
);
cv
::
Mat
srcimg
;
cv
::
Mat
resize_img
;
cv
::
Mat
resize_img_rec
;
cv
::
Mat
crop_img
;
img
.
copyTo
(
srcimg
);
this
->
resize_op_
.
Run
(
img
,
resize_img
,
this
->
max_side_len_
,
ratio_h
,
ratio_w
,
this
->
use_tensorrt_
);
this
->
normalize_op_
.
Run
(
&
resize_img
,
this
->
mean_det
,
this
->
scale_det
,
this
->
is_scale_
);
std
::
vector
<
float
>
input
(
1
*
3
*
resize_img
.
rows
*
resize_img
.
cols
,
0.0
f
);
this
->
permute_op_
.
Run
(
&
resize_img
,
input
.
data
());
TensorVector
*
real_in
=
new
TensorVector
();
if
(
!
real_in
)
{
LOG
(
ERROR
)
<<
"real_in is nullptr,error"
;
return
-
1
;
}
for
(
int
i
=
0
;
i
<
in
->
size
();
++
i
)
{
input_shape
=
{
1
,
3
,
resize_img
.
rows
,
resize_img
.
cols
};
std
::
cout
<<
"i am thomas young and i want to know the out info name : "
<<
",shapesize:"
<<
input_shape
.
size
()
<<
std
::
endl
;
in_num
=
std
::
accumulate
(
input_shape
.
begin
(),
input_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
databuf_size
=
in_num
*
sizeof
(
float
);
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
memcpy
(
databuf_data
,
input
.
data
(),
databuf_size
);
std
::
cout
<<
"the out num: "
<<
in_num
<<
std
::
endl
;
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in
;
tensor_in
.
name
=
in
->
at
(
i
).
name
;
tensor_in
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_in
.
shape
=
{
1
,
3
,
resize_img
.
rows
,
resize_img
.
cols
};
tensor_in
.
lod
=
in
->
at
(
i
).
lod
;
tensor_in
.
data
=
paddleBuf
;
real_in
->
push_back
(
tensor_in
);
}
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
real_in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
std
::
cout
<<
"success after infer "
<<
std
::
endl
;
std
::
vector
<
int
>
output_shape
;
int
out_num
=
0
;
void
*
databuf_data_out
=
NULL
;
char
*
databuf_char_out
=
NULL
;
size_t
databuf_size_out
=
0
;
//this is special add for PaddleOCR postprecess
int
infer_outnum
=
out
->
size
();
for
(
int
k
=
0
;
k
<
infer_outnum
;
++
k
)
{
int
n2
=
out
->
at
(
k
).
shape
[
2
];
int
n3
=
out
->
at
(
k
).
shape
[
3
];
int
n
=
n2
*
n3
;
float
*
out_data
=
static_cast
<
float
*>
(
out
->
at
(
k
).
data
.
data
());
std
::
vector
<
float
>
pred
(
n
,
0.0
);
std
::
vector
<
unsigned
char
>
cbuf
(
n
,
' '
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
pred
[
i
]
=
float
(
out_data
[
i
]);
cbuf
[
i
]
=
(
unsigned
char
)((
out_data
[
i
])
*
255
);
}
cv
::
Mat
cbuf_map
(
n2
,
n3
,
CV_8UC1
,
(
unsigned
char
*
)
cbuf
.
data
());
cv
::
Mat
pred_map
(
n2
,
n3
,
CV_32F
,
(
float
*
)
pred
.
data
());
const
double
threshold
=
this
->
det_db_thresh_
*
255
;
const
double
maxvalue
=
255
;
cv
::
Mat
bit_map
;
cv
::
threshold
(
cbuf_map
,
bit_map
,
threshold
,
maxvalue
,
cv
::
THRESH_BINARY
);
cv
::
Mat
dilation_map
;
cv
::
Mat
dila_ele
=
cv
::
getStructuringElement
(
cv
::
MORPH_RECT
,
cv
::
Size
(
2
,
2
));
cv
::
dilate
(
bit_map
,
dilation_map
,
dila_ele
);
boxes
=
post_processor_
.
BoxesFromBitmap
(
pred_map
,
dilation_map
,
this
->
det_db_box_thresh_
,
this
->
det_db_unclip_ratio_
);
boxes
=
post_processor_
.
FilterTagDetRes
(
boxes
,
ratio_h
,
ratio_w
,
srcimg
);
for
(
int
i
=
boxes
.
size
()
-
1
;
i
>=
0
;
i
--
)
{
crop_img
=
GetRotateCropImage
(
img
,
boxes
[
i
]);
float
wh_ratio
=
float
(
crop_img
.
cols
)
/
float
(
crop_img
.
rows
);
this
->
resize_op_rec
.
Run
(
crop_img
,
resize_img_rec
,
wh_ratio
,
this
->
use_tensorrt_
);
this
->
normalize_op_
.
Run
(
&
resize_img_rec
,
this
->
mean_rec
,
this
->
scale_rec
,
this
->
is_scale_
);
std
::
vector
<
float
>
output_rec
(
1
*
3
*
resize_img_rec
.
rows
*
resize_img_rec
.
cols
,
0.0
f
);
this
->
permute_op_
.
Run
(
&
resize_img_rec
,
output_rec
.
data
());
// Inference.
output_shape
=
{
1
,
3
,
resize_img_rec
.
rows
,
resize_img_rec
.
cols
};
std
::
cout
<<
"i am thomas young and i want to know the out info name : "
<<
",shapesize:"
<<
output_shape
.
size
()
<<
"shape :"
;
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
databuf_size_out
=
out_num
*
sizeof
(
float
);
databuf_data_out
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size_out
);
if
(
!
databuf_data_out
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size_out
;
return
-
1
;
}
memcpy
(
databuf_data_out
,
output_rec
.
data
(),
databuf_size_out
);
std
::
cout
<<
"the out num: "
<<
out_num
<<
" value = "
<<
" ,"
<<
std
::
endl
;
databuf_char_out
=
reinterpret_cast
<
char
*>
(
databuf_data_out
);
paddle
::
PaddleBuf
paddleBuf
(
databuf_char_out
,
databuf_size_out
);
paddle
::
PaddleTensor
tensor_out
;
tensor_out
.
name
=
"image"
;
tensor_out
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_out
.
shape
=
{
1
,
3
,
resize_img_rec
.
rows
,
resize_img_rec
.
cols
};
//tensor_in.lod = in->at(i).lod;
tensor_out
.
data
=
paddleBuf
;
out
->
push_back
(
tensor_out
);
}
}
out
->
erase
(
out
->
begin
(),
out
->
begin
()
+
infer_outnum
);
std
::
cout
<<
"success after out process "
<<
std
::
endl
;
/*this is special add for two fit a line InferOPTest
int var_num = in->size();
out->clear();
for (int k =0; k<var_num; ++k){
out->push_back(in->at(k));
}
*/
/*
for (int k = 0;k <out->size(); ++k) {
out->at(k).data.Resize(13 * sizeof(float));
out->at(k).shape[1] = 13;
out->at(k).name = "x";
float *dst_ptr = static_cast<float *>(out->at(k).data.data());
for(int l =0; l<13; ++l){dst_ptr[l] = (0.1+l);}
}*/
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
AddBlobInfo
(
output_blob
,
end
);
return
0
;
}
cv
::
Mat
GeneralYSLOp
::
Base2Mat
(
std
::
string
&
base64_data
)
{
cv
::
Mat
img
;
std
::
string
s_mat
;
s_mat
=
base64Decode
(
base64_data
.
data
(),
base64_data
.
size
());
std
::
vector
<
char
>
base64_img
(
s_mat
.
begin
(),
s_mat
.
end
());
img
=
cv
::
imdecode
(
base64_img
,
cv
::
IMREAD_COLOR
);
//CV_LOAD_IMAGE_COLOR
return
img
;
}
std
::
string
GeneralYSLOp
::
base64Decode
(
const
char
*
Data
,
int
DataByte
)
{
//解码表
const
char
DecodeTable
[]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
62
,
// '+'
0
,
0
,
0
,
63
,
// '/'
52
,
53
,
54
,
55
,
56
,
57
,
58
,
59
,
60
,
61
,
// '0'-'9'
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
// 'A'-'Z'
0
,
0
,
0
,
0
,
0
,
0
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40
,
41
,
42
,
43
,
44
,
45
,
46
,
47
,
48
,
49
,
50
,
51
,
// 'a'-'z'
};
//返回值
std
::
string
strDecode
;
int
nValue
;
int
i
=
0
;
while
(
i
<
DataByte
)
{
if
(
*
Data
!=
'\r'
&&
*
Data
!=
'\n'
)
{
nValue
=
DecodeTable
[
*
Data
++
]
<<
18
;
nValue
+=
DecodeTable
[
*
Data
++
]
<<
12
;
strDecode
+=
(
nValue
&
0x00FF0000
)
>>
16
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
]
<<
6
;
strDecode
+=
(
nValue
&
0x0000FF00
)
>>
8
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
];
strDecode
+=
nValue
&
0x000000FF
;
}
}
i
+=
4
;
}
else
// 回车换行,跳过
{
Data
++
;
i
++
;
}
}
return
strDecode
;
}
cv
::
Mat
GeneralYSLOp
::
GetRotateCropImage
(
const
cv
::
Mat
&
srcimage
,
std
::
vector
<
std
::
vector
<
int
>>
box
)
{
cv
::
Mat
image
;
srcimage
.
copyTo
(
image
);
std
::
vector
<
std
::
vector
<
int
>>
points
=
box
;
int
x_collect
[
4
]
=
{
box
[
0
][
0
],
box
[
1
][
0
],
box
[
2
][
0
],
box
[
3
][
0
]};
int
y_collect
[
4
]
=
{
box
[
0
][
1
],
box
[
1
][
1
],
box
[
2
][
1
],
box
[
3
][
1
]};
int
left
=
int
(
*
std
::
min_element
(
x_collect
,
x_collect
+
4
));
int
right
=
int
(
*
std
::
max_element
(
x_collect
,
x_collect
+
4
));
int
top
=
int
(
*
std
::
min_element
(
y_collect
,
y_collect
+
4
));
int
bottom
=
int
(
*
std
::
max_element
(
y_collect
,
y_collect
+
4
));
cv
::
Mat
img_crop
;
image
(
cv
::
Rect
(
left
,
top
,
right
-
left
,
bottom
-
top
)).
copyTo
(
img_crop
);
for
(
int
i
=
0
;
i
<
points
.
size
();
i
++
)
{
points
[
i
][
0
]
-=
left
;
points
[
i
][
1
]
-=
top
;
}
int
img_crop_width
=
int
(
sqrt
(
pow
(
points
[
0
][
0
]
-
points
[
1
][
0
],
2
)
+
pow
(
points
[
0
][
1
]
-
points
[
1
][
1
],
2
)));
int
img_crop_height
=
int
(
sqrt
(
pow
(
points
[
0
][
0
]
-
points
[
3
][
0
],
2
)
+
pow
(
points
[
0
][
1
]
-
points
[
3
][
1
],
2
)));
cv
::
Point2f
pts_std
[
4
];
pts_std
[
0
]
=
cv
::
Point2f
(
0.
,
0.
);
pts_std
[
1
]
=
cv
::
Point2f
(
img_crop_width
,
0.
);
pts_std
[
2
]
=
cv
::
Point2f
(
img_crop_width
,
img_crop_height
);
pts_std
[
3
]
=
cv
::
Point2f
(
0.
f
,
img_crop_height
);
cv
::
Point2f
pointsf
[
4
];
pointsf
[
0
]
=
cv
::
Point2f
(
points
[
0
][
0
],
points
[
0
][
1
]);
pointsf
[
1
]
=
cv
::
Point2f
(
points
[
1
][
0
],
points
[
1
][
1
]);
pointsf
[
2
]
=
cv
::
Point2f
(
points
[
2
][
0
],
points
[
2
][
1
]);
pointsf
[
3
]
=
cv
::
Point2f
(
points
[
3
][
0
],
points
[
3
][
1
]);
cv
::
Mat
M
=
cv
::
getPerspectiveTransform
(
pointsf
,
pts_std
);
cv
::
Mat
dst_img
;
cv
::
warpPerspective
(
img_crop
,
dst_img
,
M
,
cv
::
Size
(
img_crop_width
,
img_crop_height
),
cv
::
BORDER_REPLICATE
);
if
(
float
(
dst_img
.
rows
)
>=
float
(
dst_img
.
cols
)
*
1.5
)
{
cv
::
Mat
srcCopy
=
cv
::
Mat
(
dst_img
.
rows
,
dst_img
.
cols
,
dst_img
.
depth
());
cv
::
transpose
(
dst_img
,
srcCopy
);
cv
::
flip
(
srcCopy
,
srcCopy
,
0
);
return
srcCopy
;
}
else
{
return
dst_img
;
}
}
DEFINE_OP
(
GeneralYSLOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
\ No newline at end of file
core/general-server/op/general_ysl_op.h
已删除
100755 → 0
浏览文件 @
7efb4a3b
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <numeric>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/tools/ocrtools/postprocess_op.h"
#include "core/predictor/tools/ocrtools/preprocess_op.h"
#include "paddle_inference_api.h" // NOLINT
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
GeneralYSLOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralYSLOp
);
int
inference
();
private:
//config info
bool
use_gpu_
=
false
;
int
gpu_id_
=
0
;
int
gpu_mem_
=
4000
;
int
cpu_math_library_num_threads_
=
4
;
bool
use_mkldnn_
=
false
;
// pre-process
PaddleOCR
::
ResizeImgType0
resize_op_
;
PaddleOCR
::
Normalize
normalize_op_
;
PaddleOCR
::
Permute
permute_op_
;
PaddleOCR
::
CrnnResizeImg
resize_op_rec
;
bool
use_tensorrt_
=
false
;
bool
use_fp16_
=
false
;
// post-process
PaddleOCR
::
PostProcessor
post_processor_
;
//det config info
int
max_side_len_
=
960
;
double
det_db_thresh_
=
0.3
;
double
det_db_box_thresh_
=
0.5
;
double
det_db_unclip_ratio_
=
2.0
;
std
::
vector
<
float
>
mean_det
=
{
0.485
f
,
0.456
f
,
0.406
f
};
std
::
vector
<
float
>
scale_det
=
{
1
/
0.229
f
,
1
/
0.224
f
,
1
/
0.225
f
};
bool
is_scale_
=
true
;
//rec config info
std
::
vector
<
std
::
string
>
label_list_
;
std
::
vector
<
float
>
mean_rec
=
{
0.5
f
,
0.5
f
,
0.5
f
};
std
::
vector
<
float
>
scale_rec
=
{
1
/
0.5
f
,
1
/
0.5
f
,
1
/
0.5
f
};
cv
::
Mat
GetRotateCropImage
(
const
cv
::
Mat
&
srcimage
,
std
::
vector
<
std
::
vector
<
int
>>
box
);
cv
::
Mat
Base2Mat
(
std
::
string
&
base64_data
);
std
::
string
base64Decode
(
const
char
*
Data
,
int
DataByte
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int
>>>
boxes
;
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/predictor/framework/infer.h
浏览文件 @
53413a48
...
...
@@ -608,10 +608,6 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
for
(
int
i
=
0
;
i
<
tensorVector_in_pointer
->
size
();
++
i
){
auto
lod_tensor_in
=
core
->
GetInputHandle
((
*
tensorVector_in_pointer
)[
i
].
name
);
lod_tensor_in
->
SetLoD
((
*
tensorVector_in_pointer
)[
i
].
lod
);
std
::
cout
<<
"i am thomas young and i want to know the in info name : "
<<
(
*
tensorVector_in_pointer
)[
i
].
name
<<
",shapesize:"
<<
(
*
tensorVector_in_pointer
)[
i
].
shape
.
size
()
<<
"shape :"
;;
for
(
auto
l
=
0
;
l
!=
(
*
tensorVector_in_pointer
)[
i
].
shape
.
size
();
++
l
)
std
::
cout
<<
(
*
tensorVector_in_pointer
)[
i
].
shape
[
l
]
<<
" ,"
;
std
::
cout
<<
std
::
endl
;
lod_tensor_in
->
Reshape
((
*
tensorVector_in_pointer
)[
i
].
shape
);
void
*
origin_data
=
(
*
tensorVector_in_pointer
)[
i
].
data
.
data
();
//Because the core needs to determine the size of memory space according to the data type passed in.
...
...
@@ -652,10 +648,6 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
for
(
int
i
=
0
;
i
<
outnames
.
size
();
++
i
){
auto
lod_tensor_out
=
core
->
GetOutputHandle
(
outnames
[
i
]);
output_shape
=
lod_tensor_out
->
shape
();
std
::
cout
<<
"i am thomas young and i want to know the out info name : "
<<
outnames
[
i
]
<<
",shapesize:"
<<
output_shape
.
size
()
<<
"shape :"
;
for
(
auto
l
=
0
;
l
!=
output_shape
.
size
();
++
l
)
std
::
cout
<<
output_shape
[
l
]
<<
" ,"
;
std
::
cout
<<
std
::
endl
;
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
dataType
=
lod_tensor_out
->
type
();
if
(
dataType
==
paddle
::
PaddleDType
::
FLOAT32
)
{
...
...
@@ -667,7 +659,6 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
}
float
*
data_out
=
reinterpret_cast
<
float
*>
(
databuf_data
);
lod_tensor_out
->
CopyToCpu
(
data_out
);
std
::
cout
<<
"the out num: "
<<
out_num
<<
" value = "
<<
data_out
[
0
]
<<
" ,"
<<
std
::
endl
;
databuf_char
=
reinterpret_cast
<
char
*>
(
data_out
);
}
else
if
(
dataType
==
paddle
::
PaddleDType
::
INT64
)
{
databuf_size
=
out_num
*
sizeof
(
int64_t
);
...
...
python/paddle_serving_server/__init__.py
浏览文件 @
53413a48
...
...
@@ -49,7 +49,7 @@ class OpMaker(object):
"general_dist_kv_infer"
:
"GeneralDistKVInferOp"
,
"general_dist_kv_quant_infer"
:
"GeneralDistKVQuantInferOp"
,
"general_copy"
:
"GeneralCopyOp"
,
"general_
YSL"
:
"GeneralYSL
Op"
,
"general_
detection"
:
"GeneralDetection
Op"
,
}
self
.
node_name_suffix_
=
collections
.
defaultdict
(
int
)
...
...
@@ -307,7 +307,7 @@ class Server(object):
# it from workflow_conf.
default_engine_types
=
[
'GeneralInferOp'
,
'GeneralDistKVInferOp'
,
'GeneralDistKVQuantInferOp'
,
'General
YSL
Op'
,
'GeneralDistKVQuantInferOp'
,
'General
Detection
Op'
,
]
model_config_paths_list_idx
=
0
for
node
in
self
.
workflow_conf
.
workflows
[
0
].
nodes
:
...
...
python/paddle_serving_server/serve.py
浏览文件 @
53413a48
...
...
@@ -114,7 +114,7 @@ def start_standard_model(serving_port): # pylint: disable=doc-string-missing
for
idx
,
single_model
in
enumerate
(
model
):
infer_op_name
=
"general_infer"
if
len
(
model
)
==
2
and
idx
==
0
:
infer_op_name
=
"general_
YSL
"
infer_op_name
=
"general_
detection
"
else
:
infer_op_name
=
"general_infer"
general_infer_op
=
op_maker
.
create
(
infer_op_name
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录