RUN_IN_DOCKER.md 5.3 KB
Newer Older
1 2
# How to run PaddleServing in Docker

J
Jiawei Wang 已提交
3 4
([简体中文](./RUN_IN_DOCKER_CN.md)|English)

5 6 7 8 9 10 11 12 13 14 15 16 17
## Requirements

Docker (GPU version requires nvidia-docker to be installed on the GPU machine)

## CPU

### Get docker image

You can get images in two ways:

1. Pull image directly

   ```bash
B
barrierye 已提交
18
   docker pull hub.baidubce.com/paddlepaddle/serving:0.1.3
19 20 21 22
   ```

2. Building image based on dockerfile

B
barrierye 已提交
23
   Create a new folder and copy [Dockerfile](../tools/Dockerfile) to this folder, and run the following command:
24 25

   ```bash
B
barrierye 已提交
26
   docker build -t hub.baidubce.com/paddlepaddle/serving:0.1.3 .
27 28 29 30 31
   ```

### Create container

```bash
B
barrierye 已提交
32
docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:0.1.3
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
docker exec -it test bash
```

The `-p` option is to map the `9292` port of the container to the `9292` port of the host.

### Install PaddleServing

In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it

```bash
pip install paddle-serving-server
```

### Test example

B
barrierye 已提交
48 49 50 51 52 53
Before running the GPU version of the Server side code, you need to set the `CUDA_VISIBLE_DEVICES` environment variable to specify which GPUs the prediction service uses. The following example specifies two GPUs with indexes 0 and 1:

```bash
export CUDA_VISIBLE_DEVICES=0,1
```

54 55 56 57 58 59 60 61 62 63 64 65
Get the trained Boston house price prediction model by the following command:

```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

- Test HTTP service

  Running on the Server side (inside the container):

  ```bash
B
fix doc  
barrierye 已提交
66
  python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci &>std.log 2>err.log &
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  ```

  Running on the Client side (inside or outside the container):

  ```bash
  curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
  ```

- Test RPC service

  Running on the Server side (inside the container):

  ```bash
  python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 &>std.log 2>err.log &
  ```

  Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):

  ```bash
  from paddle_serving_client import Client
  
  client = Client()
  client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
  client.connect(["127.0.0.1:9292"])
  data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
          -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
  fetch_map = client.predict(feed={"x": data}, fetch=["price"])
  print(fetch_map)
  ```

  

## GPU

The GPU version is basically the same as the CPU version, with only some differences in interface naming (GPU version requires nvidia-docker to be installed on the GPU machine).

### Get docker image

You can also get images in two ways:

1. Pull image directly

   ```bash
B
barrierye 已提交
110
   nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:0.1.3-gpu
111 112 113 114
   ```

2. Building image based on dockerfile

B
barrierye 已提交
115
   Create a new folder and copy [Dockerfile.gpu](../tools/Dockerfile.gpu) to this folder, and run the following command:
116 117

   ```bash
B
barrierye 已提交
118
   nvidia-docker build -t hub.baidubce.com/paddlepaddle/serving:0.1.3-gpu .
119 120 121 122 123
   ```

### Create container

```bash
B
barrierye 已提交
124
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:0.1.3-gpu
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
nvidia-docker exec -it test bash
```

The `-p` option is to map the `9292` port of the container to the `9292` port of the host.

### Install PaddleServing

In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it:

```bash
pip install paddle-serving-server-gpu
```

### Test example

Get the trained Boston house price prediction model by the following command:

```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

- Test HTTP service

  Running on the Server side (inside the container):

  ```bash
M
MRXLT 已提交
152
  python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --name uci --gpu_ids 0
153 154 155 156 157 158 159 160 161 162 163 164 165
  ```

  Running on the Client side (inside or outside the container):

  ```bash
  curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
  ```

- Test RPC service

  Running on the Server side (inside the container):

  ```bash
M
MRXLT 已提交
166
  python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --gpu_ids 0
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  ```

  Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):

  ```bash
  from paddle_serving_client import Client
  
  client = Client()
  client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
  client.connect(["127.0.0.1:9292"])
  data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
          -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
  fetch_map = client.predict(feed={"x": data}, fetch=["price"])
  print(fetch_map)
  ```