RUN_IN_DOCKER.md 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# How to run PaddleServing in Docker

## Requirements

Docker (GPU version requires nvidia-docker to be installed on the GPU machine)

## CPU

### Get docker image

You can get images in two ways:

1. Pull image directly

   ```bash
B
barrierye 已提交
16
   docker pull hub.baidubce.com/paddlepaddle/serving:0.1.3
17 18 19 20
   ```

2. Building image based on dockerfile

B
barrierye 已提交
21
   Create a new folder and copy [Dockerfile](../tools/Dockerfile) to this folder, and run the following command:
22 23

   ```bash
B
barrierye 已提交
24
   docker build -t hub.baidubce.com/paddlepaddle/serving:0.1.3 .
25 26 27 28 29
   ```

### Create container

```bash
B
barrierye 已提交
30
docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:0.1.3
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
docker exec -it test bash
```

The `-p` option is to map the `9292` port of the container to the `9292` port of the host.

### Install PaddleServing

In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it

```bash
pip install paddle-serving-server
```

### Test example

B
barrierye 已提交
46 47 48 49 50 51
Before running the GPU version of the Server side code, you need to set the `CUDA_VISIBLE_DEVICES` environment variable to specify which GPUs the prediction service uses. The following example specifies two GPUs with indexes 0 and 1:

```bash
export CUDA_VISIBLE_DEVICES=0,1
```

52 53 54 55 56 57 58 59 60 61 62 63
Get the trained Boston house price prediction model by the following command:

```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

- Test HTTP service

  Running on the Server side (inside the container):

  ```bash
B
fix doc  
barrierye 已提交
64
  python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci &>std.log 2>err.log &
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  ```

  Running on the Client side (inside or outside the container):

  ```bash
  curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
  ```

- Test RPC service

  Running on the Server side (inside the container):

  ```bash
  python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 &>std.log 2>err.log &
  ```

  Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):

  ```bash
  from paddle_serving_client import Client
  
  client = Client()
  client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
  client.connect(["127.0.0.1:9292"])
  data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
          -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
  fetch_map = client.predict(feed={"x": data}, fetch=["price"])
  print(fetch_map)
  ```

  

## GPU

The GPU version is basically the same as the CPU version, with only some differences in interface naming (GPU version requires nvidia-docker to be installed on the GPU machine).

### Get docker image

You can also get images in two ways:

1. Pull image directly

   ```bash
B
barrierye 已提交
108
   nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:0.1.3-gpu
109 110 111 112
   ```

2. Building image based on dockerfile

B
barrierye 已提交
113
   Create a new folder and copy [Dockerfile.gpu](../tools/Dockerfile.gpu) to this folder, and run the following command:
114 115

   ```bash
B
barrierye 已提交
116
   nvidia-docker build -t hub.baidubce.com/paddlepaddle/serving:0.1.3-gpu .
117 118 119 120 121
   ```

### Create container

```bash
B
barrierye 已提交
122
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:0.1.3-gpu
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
nvidia-docker exec -it test bash
```

The `-p` option is to map the `9292` port of the container to the `9292` port of the host.

### Install PaddleServing

In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it:

```bash
pip install paddle-serving-server-gpu
```

### Test example

Get the trained Boston house price prediction model by the following command:

```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

- Test HTTP service

  Running on the Server side (inside the container):

  ```bash
B
fix doc  
barrierye 已提交
150
  python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --name uci
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  ```

  Running on the Client side (inside or outside the container):

  ```bash
  curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
  ```

- Test RPC service

  Running on the Server side (inside the container):

  ```bash
  python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292
  ```

  Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):

  ```bash
  from paddle_serving_client import Client
  
  client = Client()
  client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
  client.connect(["127.0.0.1:9292"])
  data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
          -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
  fetch_map = client.predict(feed={"x": data}, fetch=["price"])
  print(fetch_map)
  ```