Noise_EN.ipynb 38.8 KB
Notebook
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Simulating noisy quantum circuits with Paddle Quantum\n",
    "\n",
    "<em> Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Introduction to quantum noises\n",
    "\n",
    "In ideal models, we usually assume that quantum circuits are operating on a **closed physical system**. However, real quantum devices suffer from **incoherent noises** introduced by unwanted interactions between the system and the environment. This type of noise can significantly change the performance of quantum computation tasks and hence can hardly be ignored for near-term quantum devices. Consequently, designing robust quantum algorithms under the presence of noise is crucial for utilizing quantum computation in the real world. With the noise module of Paddle Quantum, we can now not only design and simulate quantum algorithms but also examine various noises' influence and further develop error mitigation schemes.\n",
    "\n",
    "## Building noise models in Paddle Quantum\n",
    "\n",
    "### Noise model and quantum channel\n",
    " \n",
    "The evolution of a closed quantum system is always unitary. Mathematically, we can describe such a process as implementing a parameterized quantum circuit $U(\\vec{\\theta})$,\n",
    "\n",
    "$$\n",
    "\\rho \\longrightarrow U(\\vec{\\theta}) \\rho U^\\dagger(\\vec{\\theta}),\n",
    "\\tag{1}\n",
    "$$\n",
    "\n",
    "where $\\rho$ is the initial quantum state, $\\vec{\\theta}$ is a vector containing all the parameters. The most intuitive type of noise one can think of is the error that appears in these parameters, \n",
    "$$\n",
    "\\rho \\longrightarrow U(\\vec{\\theta}+\\vec{\\epsilon}) \\rho U^\\dagger(\\vec{\\theta}+\\vec{\\epsilon}),\n",
    "\\tag{2}\n",
    "$$\n",
    "\n",
    "$\\vec{\\epsilon}$ can be a white noise sampled from Gaussian distributions. This kind of noise is a specific example of **coherent noises**. Coherent noise usually occurs due to device calibration errors or quantum control errors. We want to emphasize that one also uses unitary transformation $U(\\vec{\\epsilon})$ to describe coherent noises. In certain cases, coherent noises can be more damaging than incoherent noises [1].  \n",
    "\n",
    "Most of the time, the real problem lies on the evolution of an **open quantum system** that is non-unitary. Under this circumstance, we need a more general description beyond the unitary transformation to characterize incoherent noises, the language of **quantum channels**. To keep the discussion precise, we use *operator-sum representation* [2] to introduce a quantum channel as \n",
    "\n",
    "$$\n",
    "\\mathcal{E}(\\rho) =  \\sum_{k=0}^{m-1} E_k \\rho E_k^{\\dagger},\n",
    "\\tag{3}\n",
    "$$\n",
    "\n",
    "where $\\{E_k\\}$ are *Kraus* operators, and they satisfy the completeness condition  $\\sum_k E_k^\\dagger E_k = I$. Mathematically, a quantum channel is completely positive and trace-preserving [2].\n",
    "\n",
    "Under this representation, we can explicitly observe the results of implementing a quantum channel: Suppose we start with a pure state $\\rho = |\\psi\\rangle\\langle \\psi|$, then we send it through a noisy quantum channel (e.g., $m = 2$ ). Eventually, we will get a mixed state $\\mathcal{E}(\\rho) = E_0 \\rho E_0^\\dagger + E_1 \\rho E_1^\\dagger$. Let's take the bit flip noise as an example: \n",
    "\n",
    "$$\n",
    "\\mathcal{E}_{BF}(\\rho) = (1 - p) I \\rho I+ p X \\rho X,\n",
    "\\tag{4}\n",
    "$$\n",
    "\n",
    "where $X,I$ are Pauli operators. The corresponding *Kraus* operators are:\n",
    "\n",
    "$$\n",
    "E_0 = \\sqrt{1-p}\n",
    "\\begin{bmatrix}\n",
    "1&0 \\\\\n",
    "0&1\n",
    "\\end{bmatrix},\n",
    "E_1 = \\sqrt{p}\n",
    "\\begin{bmatrix}\n",
    "0& 1 \\\\\n",
    "1 &0\n",
    "\\end{bmatrix}.\n",
    "\\tag{5}\n",
    "$$\n",
    "\n",
Q
Quleaf 已提交
71
    "The physical meaning of this quantum channel is there exist a  probability $p$ that the state $|0\\rangle$ will flip into $|1\\rangle$, and vice versa. In Paddle Quantum, we can use this quantum channel by `Circuit.bit_flip(p, which_qubit)`, where `p` is the noise level.\n",
Q
Quleaf 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    "\n",
    "**Note:** For a quantum channel, the Kraus operator representation is not necessarily unique [3]."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementation with Paddle Quantum\n",
    "\n",
    "In this section, we will learn how to build a noise model in Paddle Quantum. First, we initialize a qubit to $|0\\rangle$. "
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
87
   "execution_count": 2,
Q
Quleaf 已提交
88 89 90 91 92 93 94 95 96
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-04-09T02:32:24.919291Z",
     "start_time": "2021-04-09T02:32:22.237264Z"
    }
   },
   "outputs": [
    {
     "data": {
Q
Quleaf 已提交
97
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEDCAYAAAA4FgP0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAARqUlEQVR4nO3de7BdZX3G8e+TcBEFpULqYC6CNWiDCmJER20Fr8SqwWtBqpWqkQoWp1OVdqzUaqdaL60WNKZK8TIFa0VEjTBWReqtQigXg0YjF0mhI6j1WsXIr3/sHdnu7HP2Tsjah+T9fmbOnL3e913r/JJJ8mS9611rpaqQJLVr3lwXIEmaWwaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjdpvrArbV/vvvXwceeOBclyFJO5V169bdUlULRvXtdEFw4IEHcumll851GZK0U0ly/Ux9Tg1JUuMMAklqnEEgSY0zCCSpcQaBJDWusyBIcmaS7yT56gz9SfL2JBuTXJnk8K5qkSTNrMszgrOAo2fpXwEs7X+tAt7ZYS2SpBl0FgRVdTHwvVmGrATeVz1fBvZNckBX9UiSRpvLG8oWAjcMbG/qt900PDDJKnpnDSxZsmS7f+CBp35iu/fVru+6N/zeXJcgzYm5vFicEW0jX5dWVWuqanlVLV+wYOQd0pKk7TSXQbAJWDywvQi4cY5qkaRmzWUQnA88v7966BHAD6pqq2khSVK3OrtGkORs4Ehg/ySbgNOA3QGqajWwFngysBH4KXBCV7VIkmbWWRBU1XFj+gs4qaufL0majHcWS1LjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhrXaRAkOTrJhiQbk5w6ov8eST6W5Iok65Oc0GU9kqStdRYESeYDZwArgGXAcUmWDQ07Cbi6qg4FjgTekmSPrmqSJG2tyzOCI4CNVXVNVd0KnAOsHBpTwD5JAuwNfA/Y3GFNkqQhXQbBQuCGge1N/bZBpwO/DdwIXAWcUlW3dViTJGlIl0GQEW01tP0k4HLg3sBhwOlJ7r7VgZJVSS5NcunNN9+8o+uUpKZ1GQSbgMUD24vo/c9/0AnAudWzEbgWeMDwgapqTVUtr6rlCxYs6KxgSWpRl0FwCbA0yUH9C8DHAucPjfk28DiAJPcC7g9c02FNkqQhu3V14KranORk4EJgPnBmVa1PcmK/fzXwOuCsJFfRm0p6VVXd0lVNkqStdRYEAFW1Flg71LZ64PONwBO7rEGSNDvvLJakxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcRMFQZJHJblb//MfJHlrkvt0W5okaRomPSN4J/DTJIcCrwSuB97XWVWSpKmZNAg2V1UBK4G3VdXbgH26K0uSNC27TTjuR0n+HHge8DtJ5gO7d1eWJGlaJj0j+H3g58AfVdX/AAuBN3VWlSRpaiYKgv4//h8G9uw33QJ8pKuiJEnTM+mqoRcD/wa8q9+0EDivo5okSVM06dTQScCjgB8CVNU3gd/sqihJ0vRMGgQ/r6pbt2wk2Q2obkqSJE3TpEHwuSR/AeyV5AnAh4CPjdspydFJNiTZmOTUGcYcmeTyJOuTfG7y0iVJO8KkQXAqcDNwFfASYC3w6tl26C8xPQNYASwDjkuybGjMvsA7gKdV1SHAs7eleEnSHTfRfQRVdRvwT/2vSR0BbKyqawCSnEPvhrSrB8Y8Fzi3qr7d/znf2YbjS5J2gFmDIMm/VtVzklzFiGsCVfXgWXZfCNwwsL0JePjQmIOB3ZNcRO9O5bdVlY+ukKQpGndGcEr/+1O249gZ0TYcJrsBDwUeB+wFfCnJl6vqG792oGQVsApgyZIl21GKJGkms14jqKqb+h9fWlXXD34BLx1z7E3A4oHtRcCNI8ZcUFU/qapbgIuBQ0fUsaaqllfV8gULFoz5sZKkbTHpxeInjGhbMWafS4ClSQ5KsgdwLHD+0JiP0nt20W5J7kpv6uhrE9YkSdoBxl0j+GN6//O/b5IrB7r2Ab4w275VtTnJycCFwHzgzKpan+TEfv/qqvpakguAK4HbgHdX1Ve3/5cjSdpW464R/AvwSeBv6S0h3eJHVfW9cQevqrX0lpoOtq0e2n4TPsBOkubMuCCoqrouyUnDHUnuOUkYSJLu3CY5I3gKsI7eip/BlUAF3LejuiRJUzJrEFTVU/rfD5pOOZKkaRt3sfjw2fqr6rIdW44kadrGTQ29ZZa+Ah67A2uRJM2BcVNDR02rEEnS3Bg3NfTYqvpMkmeM6q+qc7spS5I0LeOmhh4DfAZ46oi+AgwCSdrJjZsaOq3//YTplCNJmrZJX16/X5K3J7ksybokb0uyX9fFSZK6N+lD586h94ayZwLP6n/+YFdFSZKmZ6I3lAH3rKrXDWy/PskxHdQjSZqySc8IPpvk2CTz+l/PAT7RZWGSpOkYt3z0R9z+jKE/BT7Q75oH/Bg4rdPqJEmdG7dqaJ9pFSJJmhuTXiMgyW8AS4G7bGmrqou7KEqSND0TBUGSF9F7kf0i4HLgEcCX8FlDkrTTm/Ri8SnAw4Dr+88fegi9JaSSpJ3cpEHws6r6GUCSPavq68D9uytLkjQtk14j2JRkX+A84FNJvg/c2FVRkqTpmSgIqurp/Y9/leSzwD2ACzqrSpI0Nduyauhw4NH07iv4QlXd2llVkqSpmfShc68B3gvsB+wP/HOSV3dZmCRpOiY9IzgOeMjABeM3AJcBr++qMEnSdEy6aug6Bm4kA/YEvrXDq5EkTd24Zw39I71rAj8H1if5VH/7CcDnuy9PktS1cVNDl/a/rwM+MtB+USfVSJKmbtxD59675XOSPYCD+5sbquoXXRYmSZqOSZ81dCS9VUPX0Xsk9eIkf+hD5yRp5zfpqqG3AE+sqg0ASQ4GzgYe2lVhkqTpmHTV0O5bQgCgqr4B7N5NSZKkaZr0jGBdkvcA7+9vH0/vArIkaSc3aRCcCJwE/Am9awQXA+/oqihJ0vSMnRpKMg9YV1VvrapnVNXTq+rvq+rnE+x7dJINSTYmOXWWcQ9L8sskz9rG+iVJd9DYIKiq24ArkizZlgMnmQ+cAawAlgHHJVk2w7g3Ahduy/ElSTvGpFNDB9C7s/grwE+2NFbV02bZ5whgY1VdA5DkHGAlcPXQuJcBH6b3BjRJ0pRNGgSv3Y5jLwRuGNjeBDx8cECShcDT6b372CCQpDkw7llDd6F3ofh+wFXAe6pq84THzoi2Gtr+B+BVVfXLZNTwX9WxClgFsGTJNs1QSZLGGHdG8F7gF8B/cPtc/ykTHnsTsHhgexFbv95yOXBOPwT2B56cZHNVnTc4qKrWAGsAli9fPhwmkqQ7YFwQLKuqBwH07yP4yjYc+xJgaZKDgP8GjgWeOzigqg7a8jnJWcDHh0NAktStcUHwqwfLVdXm2aZvhvXHn0xvNdB84MyqWp/kxH7/6u2oV5K0g40LgkOT/LD/OcBe/e0AVVV3n23nqloLrB1qGxkAVfWCiSqWJO1Q4x5DPX9ahUiS5sakD52TJO2iDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUuE6DIMnRSTYk2Zjk1BH9xye5sv/1xSSHdlmPJGlrnQVBkvnAGcAKYBlwXJJlQ8OuBR5TVQ8GXges6aoeSdJoXZ4RHAFsrKprqupW4Bxg5eCAqvpiVX2/v/llYFGH9UiSRugyCBYCNwxsb+q3zeSFwCc7rEeSNMJuHR47I9pq5MDkKHpB8OgZ+lcBqwCWLFmyo+qTJNHtGcEmYPHA9iLgxuFBSR4MvBtYWVXfHXWgqlpTVcuravmCBQs6KVaSWtVlEFwCLE1yUJI9gGOB8wcHJFkCnAs8r6q+0WEtkqQZdDY1VFWbk5wMXAjMB86sqvVJTuz3rwZeA+wHvCMJwOaqWt5VTZKkrXV5jYCqWgusHWpbPfD5RcCLuqxBkjQ77yyWpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGdRoESY5OsiHJxiSnjuhPkrf3+69McniX9UiSttZZECSZD5wBrACWAcclWTY0bAWwtP+1CnhnV/VIkkbr8ozgCGBjVV1TVbcC5wArh8asBN5XPV8G9k1yQIc1SZKG7NbhsRcCNwxsbwIePsGYhcBNg4OSrKJ3xgDw4yQbdmypzdofuGWui7izyBvnugKN4J/RHec+M3V0GQQZ0VbbMYaqWgOs2RFF6XZJLq2q5XNdhzQT/4xOR5dTQ5uAxQPbi4Abt2OMJKlDXQbBJcDSJAcl2QM4Fjh/aMz5wPP7q4ceAfygqm4aPpAkqTudTQ1V1eYkJwMXAvOBM6tqfZIT+/2rgbXAk4GNwE+BE7qqRyM53aY7O/+MTkGqtpqSlyQ1xDuLJalxBoEkNc4gkKTGdXkfge5kkjyA3t3cC+ndr3EjcH5VfW1OC5M0pzwjaESSV9F7zEeAr9Bb3hvg7FEPBJTuTJK4orBDrhpqRJJvAIdU1S+G2vcA1lfV0rmpTBovyberaslc17GrcmqoHbcB9wauH2o/oN8nzakkV87UBdxrmrW0xiBox8uBTyf5Jrc/6G8JcD/g5LkqShpwL+BJwPeH2gN8cfrltMMgaERVXZDkYHqPB19I7y/XJuCSqvrlnBYn9Xwc2LuqLh/uSHLR1KtpiNcIJKlxrhqSpMYZBJLUOINAu7Qki5J8NMk3k1yT5PQke06w349naP/rJI/vf355krvOMO4pSf4ryRVJrk7ykn77MSPe3T1q/4nGSTuCQaBdVpIA5wLn9e+TWArsBfzd9h6zql5TVf/e33w5sFUQJNmd3uOTn1pVhwIPAS7qdx8DTPIP/KTjpDvMi8XaZSV5HHBaVf3uQNvd6d1LsRh4FrC8qk7u930ceHNVXdQ/I3gXcBS95YzHVtXNSc6it7rl3sCbgQ3ALVV11MDPuCfwdeA+VfV/A+2P7O/7g/7XM4HH0nsf9x703svxPOCwEeMAzgAW0Ht3x4ur6us75DdKzfOMQLuyQ4B1gw1V9UPgOnr3T8zmbsBlVXU48DngtKHjvJ3es5qOGgyBft/36L197/okZyc5Psm8qvpiv/0VVXVYVX0LOLeqHtY/c/ga8MIZxq0BXlZVDwX+DHjHNv9uSDPwPgLtykLv4Xqj2se5Dfhg//MH6E0xTayqXpTkQcDj6f3D/QTgBSOGPjDJ64F9gb3pvdHv14tN9gYeCXyoN9sFwNjrHNKkDALtytZz+7QK8KupoXvRm9J5IL9+VnyXWY61zXOoVXUVcFWS9wPXMjoIzgKOqaorkrwAOHLEmHnA/1bVYdtagzQJp4a0K/s0cNckzwdIMh94C3B6f+7+OuCwJPOSLKZ31/UW8+hdQwB4LvD5Ecf/EbDPcGOSvZMcOdB0GLc/42l4n32Am/oXmI8fdez+dNa1SZ7dP36SHDrbL1zaFgaBdlnVWwnxdOBZ/WcsfRe4rar+pj/kC/T+p34VvQu/lw3s/hPgkCTr6F3Q/esRP2IN8Mkknx1qD/DKJBuSXA68ltvPBs4BXtFfWvpbwF8C/wl8it4FZmYYdzzwwiRX0DvTWblNvxnSLFw1pGb0V+2cDTyjqtaNGy+1wiCQpMY5NSRJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuP+H8qMdZflk6M0AAAAAElFTkSuQmCC",
Q
Quleaf 已提交
98 99 100 101 102 103 104 105 106 107 108 109
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
Q
Quleaf 已提交
110
       "{'0': 1.0, '1': 0.0}"
Q
Quleaf 已提交
111 112
      ]
     },
Q
Quleaf 已提交
113
     "execution_count": 2,
Q
Quleaf 已提交
114 115 116 117 118
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
Q
Quleaf 已提交
119 120 121 122 123
    "import paddle_quantum\n",
    "from paddle_quantum.ansatz import Circuit\n",
    "\n",
    "# Change to density matrix mode\n",
    "paddle_quantum.set_backend('density_matrix')\n",
Q
Quleaf 已提交
124 125 126 127 128
    "\n",
    "# Define the number of qubits, here we use one single qubit\n",
    "num_qubits = 1\n",
    "\n",
    "# Initialize the quantum circuit\n",
Q
Quleaf 已提交
129
    "cir = Circuit(num_qubits)\n",
Q
Quleaf 已提交
130 131
    "\n",
    "# Initialize the qubit to |0><0| \n",
Q
Quleaf 已提交
132
    "init_state = paddle_quantum.state.zero_state(num_qubits)\n",
Q
Quleaf 已提交
133 134
    "\n",
    "# Mesure in the computational basis \n",
Q
Quleaf 已提交
135
    "cir(init_state).measure(shots = 1024, plot = True)"
Q
Quleaf 已提交
136 137 138 139 140 141 142 143 144 145 146 147
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Then, we add a bit flip channel with $p=0.1$, and measure the qubit after this channel.\n",
    "**Note:** Noisy module in Paddle Quantum only supports density matrix operation mode."
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
148
   "execution_count": 3,
Q
Quleaf 已提交
149 150 151 152 153 154 155 156 157 158
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-04-09T02:32:25.168455Z",
     "start_time": "2021-04-09T02:32:24.926709Z"
    },
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
Q
Quleaf 已提交
159
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEDCAYAAAA4FgP0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAARCElEQVR4nO3dfbBdVX3G8e+T8CIKikLKaF4Ea9DGFxADOmorqCgoNqjUgtQXKkaqWJ1OVdqxUqudahWnWkBMleLLlKgVETXCWBUdRQuEAmnAYOQ1hU5BraJWMfLrH+cgx5OTe04g+1yS9f3M3Llnr73Ovr+bubnP3WvttXeqCklSu+bMdgGSpNllEEhS4wwCSWqcQSBJjTMIJKlxBoEkNW6H2S5gS+2555619957z3YZkrRNWb169W1VNW/Uvm0uCPbee28uvfTS2S5DkrYpSW7Y3D6HhiSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmN2+YWlN0be5/0hdkuQfdh17/zebNdgjQrPCOQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxnUaBEkOS7IuyfokJ43Y/6Akn0tyRZK1SY7rsh5J0qY6C4Ikc4HTgMOBJcAxSZYMdXstcFVV7QccDJySZKeuapIkbarLM4KDgPVVdW1V3QGsBJYN9SlgtyQBdgV+AGzssCZJ0pAug2A+cNPA9oZ+26BTgd8BbgbWAK+vqjs7rEmSNKTLIMiIthrafg5wOfAwYH/g1CQP3ORAyfIklya59NZbb93adUpS07oMgg3AwoHtBfT+8h90HHBO9awHrgMePXygqlpRVUuraum8efM6K1iSWtRlEFwCLE6yT38C+GjgvKE+NwLPBEiyF/Ao4NoOa5IkDdmhqwNX1cYkJwIXAHOBM6tqbZIT+vvPAN4OnJVkDb2hpDdX1W1d1SRJ2lRnQQBQVauAVUNtZwy8vhl4dpc1SJJm5spiSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxnUaBEkOS7IuyfokJ22mz8FJLk+yNsnXuqxHkrSpHbo6cJK5wGnAocAG4JIk51XVVQN9dgdOBw6rqhuT/FZX9UiSRuvyjOAgYH1VXVtVdwArgWVDfV4CnFNVNwJU1f90WI8kaYQug2A+cNPA9oZ+26B9gQcnuTDJ6iQv67AeSdIInQ0NARnRViO+/hOBZwK7AN9K8u2quuY3DpQsB5YDLFq0qINSJaldXZ4RbAAWDmwvAG4e0ef8qvppVd0GfB3Yb/hAVbWiqpZW1dJ58+Z1VrAktWiiIEjy1CQP6L/+oyTvTfLwMW+7BFicZJ8kOwFHA+cN9fks8LtJdkhyf+BJwNVb9i1Iku6NSc8IPgD8LMl+wJuAG4CPzvSGqtoInAhcQO+X+yeram2SE5Kc0O9zNXA+cCVwMfChqvrPe/SdSJLukUnnCDZWVSVZBryvqj6c5OXj3lRVq4BVQ21nDG2/G3j3pAVLkrauSYPg9iR/AbyU3lDOXGDH7sqSJE3LpENDfwj8AvjjqvpvepeB+le8JG0HJgqC/i//TwM795tuAz7TVVGSpOmZ9KqhVwH/Cnyw3zQfOLejmiRJUzTp0NBrgacCPwaoqu8C3hdIkrYDkwbBL/r3CwIgyQ5sukpYkrQNmjQIvpbkL4FdkhwKfAr4XHdlSZKmZdIgOAm4FVgDvJre2oC3dFWUJGl6JlpHUFV3Av/U/5AkbUdmDIIkn6yqFydZw4g5gap6fGeVSZKmYtwZwev7n4/ouhBJ0uyYcY6gqm7pv3xNVd0w+AG8pvvyJEldm3Sy+NARbYdvzUIkSbNj3BzBn9D7y/8RSa4c2LUb8M0uC5MkTce4OYJ/Ab4I/B29S0jvcntV/aCzqiRJUzMuCKqqrk/y2uEdSR5iGEjStm+SM4IjgNX0Lh8dfCB9AY/oqC5J0pTMGARVdUT/8z7TKUeSNG3jJosPmGl/VV22dcuRJE3buKGhU2bYV8AztmItkqRZMG5o6JBpFSJJmh3jhoaeUVVfSfLCUfur6pxuypIkTcu4oaGnA18Bnj9iXwEGgSRt48YNDZ3c/3zcdMqRJE3bpA+v3yPJ+5NclmR1kvcl2aPr4iRJ3Zv0pnMr6T2h7EXAUf3Xn+iqKEnS9Ez0hDLgIVX19oHtdyQ5soN6JElTNukZwVeTHJ1kTv/jxcAXuixMkjQd4y4fvZ277zH0Z8DH+7vmAD8BTu60OklS58ZdNbTbtAqRJM2OSecISPJgYDFwv7vaqurrXRQlSZqeiYIgyfH0HmS/ALgceDLwLbzXkCRt8yadLH49cCBwQ//+Q0+gdwmpJGkbN2kQ/Lyqfg6QZOeq+g7wqO7KkiRNy6RzBBuS7A6cC3wpyQ+Bm7sqSpI0PRMFQVW9oP/yr5N8FXgQcH5nVUmSpmZLrho6AHgavXUF36yqOzqrSpI0NZPedO6twEeAPYA9gX9O8pYuC5MkTcekk8XHAAdW1cn9W1M/GTh23JuSHJZkXZL1SU6aod+BSX6V5KgJ65EkbSWTBsH1DCwkA3YGvjfTG5LMBU4DDgeWAMckWbKZfu8CLpiwFknSVjTuXkP/SG9O4BfA2iRf6m8fCnxjzLEPAtZX1bX9Y60ElgFXDfV7HfBpeusUJElTNm6y+NL+59XAZwbaL5zg2POBmwa2NwBPGuyQZD7wAnorlA0CSZoF424695G7XifZCdi3v7muqn455tgZdcih7X8A3lxVv0pGdf/1114OLAdYtGjRmC8rSdoSk95r6GB6Vw1dT+8X/MIkLx9z07kNwMKB7QVsughtKbCyHwJ7As9NsrGqzh3sVFUrgBUAS5cuHQ4TSdK9MOk6glOAZ1fVOoAk+wJnA0+c4T2XAIuT7AP8F3A08JLBDlW1z12vk5wFfH44BCRJ3Zo0CHa8KwQAquqaJDvO9Iaq2pjkRHpXA80FzqyqtUlO6O8/454WLUnaeiYNgtVJPgx8rL99LL0J5BlV1Spg1VDbyACoqldMWIskaSuaNAhOAF4L/Cm9OYKvA6d3VZQkaXrGBkGSOcDqqnos8N7uS5IkTdPYlcVVdSdwRRKv25Sk7dCkQ0MPpbey+GLgp3c1VtXvd1KVJGlqJg2Ct3VahSRp1oy719D96E0UPxJYA3y4qjZOozBJ0nSMmyP4CL3Vv2vo3UX0lM4rkiRN1bihoSVV9TiA/jqCi7svSZI0TePOCH59YzmHhCRp+zTujGC/JD/uvw6wS387QFXVAzutTpLUuXG3oZ47rUIkSbNj0kdVSpK2UwaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDWu0yBIcliSdUnWJzlpxP5jk1zZ/7goyX5d1iNJ2lRnQZBkLnAacDiwBDgmyZKhbtcBT6+qxwNvB1Z0VY8kabQuzwgOAtZX1bVVdQewElg22KGqLqqqH/Y3vw0s6LAeSdIIXQbBfOCmge0N/bbNeSXwxQ7rkSSNsEOHx86IthrZMTmEXhA8bTP7lwPLARYtWrS16pMk0e0ZwQZg4cD2AuDm4U5JHg98CFhWVd8fdaCqWlFVS6tq6bx58zopVpJa1WUQXAIsTrJPkp2Ao4HzBjskWQScA7y0qq7psBZJ0mZ0NjRUVRuTnAhcAMwFzqyqtUlO6O8/A3grsAdwehKAjVW1tKuaJEmb6nKOgKpaBawaajtj4PXxwPFd1iBJmpkriyWpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxnT6hTNKW2/ukL8x2CbqPuv6dz+vkuJ4RSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcZ0GQZLDkqxLsj7JSSP2J8n7+/uvTHJAl/VIkjbVWRAkmQucBhwOLAGOSbJkqNvhwOL+x3LgA13VI0karcszgoOA9VV1bVXdAawElg31WQZ8tHq+Deye5KEd1iRJGrJDh8eeD9w0sL0BeNIEfeYDtwx2SrKc3hkDwE+SrNu6pTZrT+C22S7iviLvmu0KNII/owPu5c/owze3o8sgyIi2ugd9qKoVwIqtUZTuluTSqlo623VIm+PP6HR0OTS0AVg4sL0AuPke9JEkdajLILgEWJxknyQ7AUcD5w31OQ94Wf/qoScDP6qqW4YPJEnqTmdDQ1W1McmJwAXAXODMqlqb5IT+/jOAVcBzgfXAz4DjuqpHIzncpvs6f0anIFWbDMlLkhriymJJapxBIEmNMwgkqXFdriPQfUySR9NbzT2f3nqNm4HzqurqWS1M0qzyjKARSd5M7zYfAS6md3lvgLNH3RBQui9J4hWFHfKqoUYkuQZ4TFX9cqh9J2BtVS2encqk8ZLcWFWLZruO7ZVDQ+24E3gYcMNQ+0P7+6RZleTKze0C9ppmLa0xCNrxBuDLSb7L3Tf6WwQ8EjhxtoqSBuwFPAf44VB7gIumX047DIJGVNX5Sfald3vw+fT+c20ALqmqX81qcVLP54Fdq+ry4R1JLpx6NQ1xjkCSGudVQ5LUOINAkhpnEGi7lmRBks8m+W6Sa5OcmmTnCd73k820/02SZ/VfvyHJ/TfT74gk/5HkiiRXJXl1v/3IEc/uHvX+ifpJW4NBoO1WkgDnAOf210ksBnYB/v6eHrOq3lpV/9bffAOwSRAk2ZHe7ZOfX1X7AU8ALuzvPhKY5Bf8pP2ke83JYm23kjwTOLmqfm+g7YH01lIsBI4CllbVif19nwfeU1UX9s8IPggcQu9yxqOr6tYkZ9G7uuVhwHuAdcBtVXXIwNd4CPAd4OFV9X8D7U/pv/dH/Y8XAc+g9zzuneg9l+OlwP4j+gGcBsyj9+yOV1XVd7bKP5Sa5xmBtmePAVYPNlTVj4Hr6a2fmMkDgMuq6gDga8DJQ8d5P717NR0yGAL9fT+g9/S9G5KcneTYJHOq6qJ++xurav+q+h5wTlUd2D9zuBp45Wb6rQBeV1VPBP4cOH2L/zWkzXAdgbZnoXdzvVHt49wJfKL/+uP0hpgmVlXHJ3kc8Cx6v7gPBV4xoutjk7wD2B3Yld4T/X6z2GRX4CnAp3qjXQCMneeQJmUQaHu2lruHVYBfDw3tRW9I57H85lnx/WY41haPoVbVGmBNko8B1zE6CM4CjqyqK5K8Ajh4RJ85wP9W1f5bWoM0CYeGtD37MnD/JC8DSDIXOAU4tT92fz2wf5I5SRbSW3V9lzn05hAAXgJ8Y8Txbwd2G25MsmuSgwea9ufuezwNv2c34Jb+BPOxo47dH866Lskf9I+fJPvN9I1LW8Ig0HareldCvAA4qn+Ppe8Dd1bV3/a7fJPeX+pr6E38Xjbw9p8Cj0mymt6E7t+M+BIrgC8m+epQe4A3JVmX5HLgbdx9NrASeGP/0tLfBv4K+HfgS/QmmNlMv2OBVya5gt6ZzrIt+seQZuBVQ2pG/6qds4EXVtXqcf2lVhgEktQ4h4YkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWrc/wNDVDLADmCGQAAAAABJRU5ErkJggg==",
Q
Quleaf 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Quantum state after the bit flip quantum channel:\n",
Q
Quleaf 已提交
174 175
      " [[0.8999999+0.j 0.       +0.j]\n",
      " [0.       +0.j 0.1      +0.j]]\n"
Q
Quleaf 已提交
176 177 178 179 180 181 182 183 184 185 186 187
     ]
    }
   ],
   "source": [
    "# Noise level\n",
    "p = 0.1\n",
    "\n",
    "# Add the bit flip noisy channel\n",
    "cir.bit_flip(p, 0)\n",
    "\n",
    "# Execute the circuit\n",
    "# Note: Noisy module in Paddle Quantum only supports density matrix operation mode\n",
Q
Quleaf 已提交
188
    "fin_state =  cir(init_state)\n",
Q
Quleaf 已提交
189 190
    "\n",
    "# Measure in the computational basis\n",
Q
Quleaf 已提交
191 192
    "fin_state.measure(shots = 1024, plot = True)\n",
    "print('Quantum state after the bit flip quantum channel:\\n', fin_state.data.numpy())"
Q
Quleaf 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As we can see, the quantum state has been transformed to a mixed state $0.9 | 0 \\rangle \\langle 0 | + 0.1 | 1 \\rangle \\langle 1 |$ (with probability $p=0.1$ ) after the bit flip channel.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Common quantum channels\n",
    "\n",
    "Paddle Quantum supports many other common noisy channels.\n",
    "\n",
    "- **Phase Flip Channel**\n",
    "\n",
    "  Similar to the bit-flip channel, the phase flip channel flips the phase of a qubit with probability $p$, \n",
    "  \n",
    "  $$\n",
    "  \\mathcal{E}_{PF}(\\rho) =  (1 - p) \\rho + p Z \\rho Z.\n",
    "  \\tag{6}\n",
    "  $$\n",
    "\n",
    "\n",
    "- **Bit-Phase Flip Channel**\n",
    "\n",
    "  $$\n",
    "  \\mathcal{E}_{BPF}(\\rho) = (1-p) \\rho + p Y \\rho Y.\n",
    "  \\tag{7}\n",
    "  $$\n",
    "\n",
    "\n",
    "- **Depolarizing Channel**\n",
    "\n",
    "  The quantum state will be in the maximally mixed state $I/2$ with probability $p$ or in the original state with probability $1-p$ after the single qubit depolarizing channel. The depolarizing channel can also be understood as applying Pauli noises symmetrically, \n",
    "  \n",
    "  $$\n",
    "  \\mathcal{E}_{D}(\\rho) = (1 - p) \\rho + \\frac{p}{3}\n",
    "  \\left( X \\rho X+ Y \\rho Y + Z \\rho Z \\right).\n",
    "  \\tag{8}\n",
    "  $$\n",
    "\n",
    "\n",
    "- **Pauli Channel**\n",
    "\n",
    "  The Pauli channel applies Pauli noises asymmetrically, \n",
    "  \n",
    "  $$\n",
    "  \\mathcal{E}_{Pauli}(\\rho) = (1 - p_x - p_y - p_z) \\rho + p_x X \\rho X + p_y Y \\rho Y + p_z Z \\rho Z.\n",
    "  \\tag{9}\n",
    "  $$\n",
    "\n",
    "\n",
    "- **Amplitude Damping Channel**\n",
    "\n",
    "  The amplitude damping channel can be used to model the process of **energy dissipation**, \n",
    "  \n",
    "  $$\n",
    "  \\mathcal{E}_{AD}(\\rho) = E_0 \\rho E_0^\\dagger + E_1 \\rho E_1^\\dagger,\n",
    "  \\tag{10}\n",
    "  $$\n",
    "  \n",
    "  where $\\gamma$ is the damping factor,\n",
    "  \n",
    "  $$\n",
    "  E_0 = \n",
    "  \\begin{bmatrix}\n",
    "   1 & 0 \\\\ 0 & \\sqrt{1 - \\gamma}\n",
    "  \\end{bmatrix},\n",
    "  E_1 = \n",
    "  \\begin{bmatrix}\n",
    "   0 & \\sqrt{\\gamma} \\\\ 0 & 0\n",
    "  \\end{bmatrix}.\n",
    "  \\tag{11}\n",
    "  $$ \n",
    "\n",
    "\n",
    "- **Phase Damping Channel**\n",
    "\n",
    "  The phase damping channel describes the loss of **quantum information** without loss of energy, \n",
    "  \n",
    "  $$\n",
    "  \\mathcal{E}_{PD}(\\rho) = E_0 \\rho E_0^\\dagger + E_1 \\rho E_1^\\dagger,\n",
    "  \\tag{12}\n",
    "  $$\n",
    "  \n",
    "  where $\\gamma$ is the damping factor,\n",
    "  \n",
    "  $$\n",
    "  E_0 = \n",
    "  \\begin{bmatrix}\n",
    "   1 & 0 \\\\ 0 & \\sqrt{1 - \\gamma}\n",
    "  \\end{bmatrix}, \n",
    "  E_1 = \n",
    "  \\begin{bmatrix}\n",
    "   0 & 0 \\\\ 0 & \\sqrt{\\gamma}\n",
    "  \\end{bmatrix}.\n",
    "  \\tag{13}\n",
    "  $$\n",
    "\n",
    "\n",
    "- **Generalized Amplitude Damping Channel**\n",
    "\n",
    "  The generalized amplitude damping channel describes energy exchange between the system and the environment at **finite temperatures**. It is a common noise in superconducting quantum computations [4]. Interested readers can find more information here [API document](https://qml.baidu.com/api/paddle_quantum.circuit.uansatz.html).\n",
    "\n",
    "\n",
Q
Quleaf 已提交
302
    "**Note:** In Paddle Quantum, we can use these noisy channels through `Circuit.phase_flip()`, `Circuit.bit_phase_flip()`, `Circuit.depolarizing()`, `Circuit.pauli_channel()`, `Circuit.amplitude_damping()`, `Circuit.phase_damping()`, and `Circuit.generalized_amplitude_damping()`.\n",
Q
Quleaf 已提交
303 304 305 306 307 308 309 310 311 312
    "\n",
    "**Note:** One usually choose the amplitude damping channel and the phase damping channel to model noises since they describe the physical process in real quantum systems (modeling $T_1$ and $T_2$ process)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Customized Channel\n",
    "\n",
Q
Quleaf 已提交
313
    "One can also use `Circuit.customized_channel()` in Paddle Quantum to add customized noisy channels. This is accomplished through user-defined Kraus operators. Here, we provide an example to reproduce the bit flip channel using customized_channel function:"
Q
Quleaf 已提交
314 315 316 317
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
318
   "execution_count": 4,
Q
Quleaf 已提交
319 320 321 322 323 324 325 326 327 328 329 330
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-04-09T02:54:20.758898Z",
     "start_time": "2021-04-09T02:54:20.599327Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "quantum state after the customized channel:\n",
Q
Quleaf 已提交
331 332
      " [[0.90000004+0.j 0.        +0.j]\n",
      " [0.        +0.j 0.1       +0.j]]\n",
Q
Quleaf 已提交
333 334
      "\n",
      " quantum state after the bit flip channel:\n",
Q
Quleaf 已提交
335 336
      " [[0.8999999+0.j 0.       +0.j]\n",
      " [0.       +0.j 0.1      +0.j]]\n",
Q
Quleaf 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349
      "\n",
      " are the two the same? True\n"
     ]
    }
   ],
   "source": [
    "import paddle\n",
    "import numpy as np\n",
    "\n",
    "# Noise level\n",
    "p = 0.1\n",
    "\n",
    "# We use customized Kraus operator to represent the bit flip channel\n",
Q
Quleaf 已提交
350 351 352
    "complex_dtype = paddle_quantum.get_dtype()\n",
    "a_0 = paddle.to_tensor(np.sqrt(1 - p) * np.array([[1, 0], [0, 1]], dtype=complex_dtype))\n",
    "a_1 = paddle.to_tensor(np.sqrt(p) * np.array([[0, 1], [1, 0]], dtype=complex_dtype))\n",
Q
Quleaf 已提交
353 354 355 356
    "Kraus_ops = [a_0, a_1]\n",
    "\n",
    "# Initialize the circuit\n",
    "num_qubits = 1\n",
Q
Quleaf 已提交
357
    "cir = Circuit(num_qubits)\n",
Q
Quleaf 已提交
358 359
    "\n",
    "# Add customized channel, input is a list of Kraus operators\n",
Q
Quleaf 已提交
360
    "cir.kraus_repr(Kraus_ops, 0)\n",
Q
Quleaf 已提交
361 362
    "\n",
    "# Execute the circuit\n",
Q
Quleaf 已提交
363
    "fin_state =  cir(init_state)\n",
Q
Quleaf 已提交
364 365
    "\n",
    "# Compare the results\n",
Q
Quleaf 已提交
366
    "cir_1 = Circuit(num_qubits)\n",
Q
Quleaf 已提交
367
    "cir_1.bit_flip(p, 0)\n",
Q
Quleaf 已提交
368 369 370 371
    "fin_state_1 = cir_1(init_state)\n",
    "print('quantum state after the customized channel:\\n', fin_state.data.numpy())\n",
    "print('\\n quantum state after the bit flip channel:\\n', fin_state_1.data.numpy())\n",
    "print('\\n are the two the same?', bool((fin_state.data - fin_state_1.data).abs().sum() < 1e-6))"
Q
Quleaf 已提交
372 373 374 375 376 377 378 379
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Discussion: Simulating noisy entanglement resources with Paddle Quantum\n",
    "\n",
Q
Quleaf 已提交
380
    "Many important quantum technologies require pre-shared entanglement resources, including quantum teleportation, state transformation, and distributed quantum computing. For instance, we want the allocated entanglement resources are in **maximally entangled states** under ideal circumstances. But in reality, noise always exists due to interactions between the system and the environment during preparation stage, transmission, and preservation. Here, we use the depolarizing channel to simulate how a white noise could affect Bell states: "
Q
Quleaf 已提交
381 382 383 384
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
385
   "execution_count": 5,
Q
Quleaf 已提交
386 387 388 389 390 391 392 393 394 395 396 397
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-04-09T02:58:30.352039Z",
     "start_time": "2021-04-09T02:58:30.311223Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Fidelity between the initial state and the Bell state 1\n",
Q
Quleaf 已提交
398
      "after transmission (depolarizing channel), the fidelity between the entangled state and Bell state 0.81333\n",
Q
Quleaf 已提交
399 400 401 402 403 404 405
      "after preservation (amplitude damping channel), the fidelity between the entangled state and Bell state 0.66752\n"
     ]
    }
   ],
   "source": [
    "import paddle\n",
    "from paddle import matmul, trace\n",
Q
Quleaf 已提交
406
    "from paddle_quantum.ansatz import Circuit\n",
Q
Quleaf 已提交
407 408 409 410 411 412 413 414
    "from paddle_quantum.state import bell_state\n",
    "\n",
    "# Noise level\n",
    "p_trans = 0.1\n",
    "p_store = 0.01\n",
    "\n",
    "# Initialize the circuit\n",
    "num_qubits = 2\n",
Q
Quleaf 已提交
415
    "cir = Circuit(num_qubits)\n",
Q
Quleaf 已提交
416 417
    "\n",
    "# The initial state is Bell state\n",
Q
Quleaf 已提交
418
    "init_state = bell_state(2)\n",
Q
Quleaf 已提交
419
    "\n",
Q
Quleaf 已提交
420
    "# Apply the depolarizing channel to each qubit, modeling the noise introduced by transmission\n",
Q
Quleaf 已提交
421 422 423 424
    "cir.depolarizing(p_trans, 0)\n",
    "cir.depolarizing(p_trans, 1)\n",
    "\n",
    "# Execute the circuit \n",
Q
Quleaf 已提交
425
    "status_mid = cir(init_state)\n",
Q
Quleaf 已提交
426 427 428 429 430 431
    "\n",
    "# Apply the amplitude damping channel to each qubit, modeling the noise introduced by storage\n",
    "cir.amplitude_damping(p_store, 0)\n",
    "cir.amplitude_damping(p_store, 1)\n",
    "\n",
    "# Execute the circuit\n",
Q
Quleaf 已提交
432 433 434
    "status_fin = cir(status_mid)\n",
    "fidelity_mid = paddle.real(trace(matmul(init_state.data, status_mid.data)))\n",
    "fidelity_fin = paddle.real(trace(matmul(init_state.data, status_fin.data)))\n",
Q
Quleaf 已提交
435 436
    "\n",
    "print(\"Fidelity between the initial state and the Bell state\", 1)\n",
Q
Quleaf 已提交
437
    "print(\"after transmission (depolarizing channel), the fidelity between the entangled state and Bell state {:.5f}\".format(fidelity_mid.numpy()[0]))\n",
Q
Quleaf 已提交
438 439 440 441 442 443 444
    "print(\"after preservation (amplitude damping channel), the fidelity between the entangled state and Bell state {:.5f}\".format(fidelity_fin.numpy()[0]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Q
Quleaf 已提交
445
    "**Note:** Interested readers can check tutorials on the LOCCNet module of Paddle Quantum, where we discuss the concept of [entanglement distillation](../locc/EntanglementDistillation_LOCCNET_EN.ipynb)."
Q
Quleaf 已提交
446 447 448 449 450 451 452 453 454
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Application: Simulating noisy VQE with Paddle Quantum\n",
    "\n",
    "\n",
Q
Quleaf 已提交
455
    "Variational Quantum Eigensolver (VQE) [5] is designed to find the ground state energy of a given molecular Hamiltonian using variational quantum circuits. Interested readers can find more details from the previous tutorial [VQE](../quantum_simulation/VQE_EN.ipynb).\n",
Q
Quleaf 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468
    "\n",
    "For illustration purposes, we use VQE to find the ground state energy for the following Hamiltonian: \n",
    "\n",
    "$$ \n",
    "H = 0.4 \\, Z \\otimes I + 0.4 \\, I \\otimes Z + 0.2 \\, X \\otimes X. \n",
    "\\tag{14}\n",
    "$$\n",
    "\n",
    "Then, we add the amplitude damping channel and compare the performance of the noisy circuit and the noiseless circuit on this task:"
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
469
   "execution_count": 12,
Q
Quleaf 已提交
470 471 472 473 474 475 476 477 478 479
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-04-09T03:06:13.534545Z",
     "start_time": "2021-04-09T03:06:13.523978Z"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import paddle\n",
Q
Quleaf 已提交
480 481
    "from paddle_quantum.ansatz import Circuit\n",
    "from paddle_quantum.qinfo import pauli_str_to_matrix\n",
Q
Quleaf 已提交
482 483 484 485 486 487 488
    "\n",
    "# Hyperparameters\n",
    "num_qubits = 2\n",
    "theta_size = 4\n",
    "ITR = 100\n",
    "LR = 0.4\n",
    "SEED = 999    \n",
Q
Quleaf 已提交
489 490 491 492 493 494 495 496
    "p = 0.1\n",
    "\n",
    "# Construct Hamiltonian using Pauli string\n",
    "H_info = [[0.4, 'z0'], [0.4, 'z1'], [0.2, 'x0,x1']]\n",
    "\n",
    "# Convert the Pauli string to a matrix\n",
    "complex_dtype = paddle_quantum.get_dtype()\n",
    "H_matrix = pauli_str_to_matrix(H_info, num_qubits).numpy().astype(complex_dtype)"
Q
Quleaf 已提交
497 498 499 500
   ]
  },
  {
   "cell_type": "code",
Q
Quleaf 已提交
501
   "execution_count": 14,
Q
Quleaf 已提交
502 503 504 505 506 507 508 509 510 511 512 513
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-04-09T03:06:36.986422Z",
     "start_time": "2021-04-09T03:06:32.444713Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "========== Training Noisy VQE ==========\n",
Q
Quleaf 已提交
514 515 516 517 518 519
      "iter: 0   loss: -0.2139\n",
      "iter: 10   loss: -0.6206\n",
      "iter: 20   loss: -0.6481\n",
      "iter: 30   loss: -0.6588\n",
      "iter: 40   loss: -0.6599\n",
      "iter: 50   loss: -0.6607\n",
Q
Quleaf 已提交
520 521 522 523 524
      "iter: 60   loss: -0.6618\n",
      "iter: 70   loss: -0.6621\n",
      "iter: 80   loss: -0.6621\n",
      "iter: 90   loss: -0.6621\n",
      "========== Training Noise Free VQE ==========\n",
Q
Quleaf 已提交
525 526 527 528 529 530 531 532
      "iter: 0   loss: -0.0799\n",
      "iter: 10   loss: -0.7243\n",
      "iter: 20   loss: -0.8103\n",
      "iter: 30   loss: -0.8180\n",
      "iter: 40   loss: -0.8230\n",
      "iter: 50   loss: -0.8240\n",
      "iter: 60   loss: -0.8243\n",
      "iter: 70   loss: -0.8245\n",
Q
Quleaf 已提交
533 534 535
      "iter: 80   loss: -0.8246\n",
      "iter: 90   loss: -0.8246\n",
      "\n",
Q
Quleaf 已提交
536 537 538
      "Ground state energy from noisy circuit:  -0.66215336 Ha\n",
      "Ground state energy from noiseless circuit:  -0.82461333 Ha\n",
      "Actual ground state energy:  -0.82462114 Ha\n"
Q
Quleaf 已提交
539 540 541 542 543 544
     ]
    }
   ],
   "source": [
    "class vqe_noisy(paddle.nn.Layer):\n",
    "    \n",
Q
Quleaf 已提交
545
    "    def __init__(self):\n",
Q
Quleaf 已提交
546
    "        super(vqe_noisy, self).__init__()\n",
Q
Quleaf 已提交
547
    "\n",
Q
Quleaf 已提交
548
    "        # Initialize circuit\n",
Q
Quleaf 已提交
549
    "        self.cir = Circuit(num_qubits)\n",
Q
Quleaf 已提交
550 551
    "        \n",
    "        # Add parameterized gates\n",
Q
Quleaf 已提交
552
    "        self.cir.ry([0, 1])\n",
Q
Quleaf 已提交
553
    "        \n",
Q
Quleaf 已提交
554
    "        self.cir.cnot([0, 1])\n",
Q
Quleaf 已提交
555
    "        \n",
Q
Quleaf 已提交
556
    "        self.cir.ry([0, 1])\n",
Q
Quleaf 已提交
557 558
    "        \n",
    "        # Add amplitude damping channel\n",
Q
Quleaf 已提交
559 560 561 562 563
    "        self.cir.amplitude_damping(p, [0, 1])\n",
    "          \n",
    "    # Define loss function and forward function\n",
    "    def forward(self):\n",
    "          \n",
Q
Quleaf 已提交
564
    "        # Execute the circuit\n",
Q
Quleaf 已提交
565
    "        state = self.cir(init_state)\n",
Q
Quleaf 已提交
566 567
    "        \n",
    "        # Expectation value of Hamiltonian \n",
Q
Quleaf 已提交
568
    "        loss = loss_func(state)\n",
Q
Quleaf 已提交
569
    "        \n",
Q
Quleaf 已提交
570
    "        return loss, self.cir\n",
Q
Quleaf 已提交
571 572 573 574
    "    \n",
    "# Construct a noiseless circuit\n",
    "class vqe_noise_free(paddle.nn.Layer):\n",
    "    \n",
Q
Quleaf 已提交
575
    "    def __init__(self):\n",
Q
Quleaf 已提交
576 577
    "        super(vqe_noise_free, self).__init__()\n",
    "        \n",
Q
Quleaf 已提交
578 579 580 581 582
    "        self.cir = Circuit(num_qubits)\n",
    "        self.cir.ry([0, 1])\n",
    "        self.cir.cnot([0, 1])\n",
    "        self.cir.ry([0, 1])\n",
    "\n",
Q
Quleaf 已提交
583 584
    "    def forward(self):\n",
    "        \n",
Q
Quleaf 已提交
585 586
    "        state = self.cir(init_state)\n",
    "        loss = loss_func(state)\n",
Q
Quleaf 已提交
587
    "        \n",
Q
Quleaf 已提交
588
    "        return loss, self.cir\n",
Q
Quleaf 已提交
589 590 591 592 593 594 595
    "    \n",
    "# Train noisy VQE circuit\n",
    "print('========== Training Noisy VQE ==========')\n",
    "loss_list = []\n",
    "parameter_list = []\n",
    "\n",
    "# Define the dimension of parameters\n",
Q
Quleaf 已提交
596
    "vqe = vqe_noisy()\n",
Q
Quleaf 已提交
597 598
    "\n",
    "# Generally, we use Adam optimizer to get a better convergence, you can change to SVG or RMS prop.\n",
Q
Quleaf 已提交
599 600 601 602 603 604 605
    "opt = paddle.optimizer.Adam(learning_rate = LR, parameters = vqe.parameters()) \n",
    "\n",
    "# Define initial state\n",
    "init_state = paddle_quantum.state.zero_state(num_qubits)\n",
    "\n",
    "# Define loss function\n",
    "loss_func = paddle_quantum.loss.ExpecVal(paddle_quantum.Hamiltonian(H_info))\n",
Q
Quleaf 已提交
606 607 608 609 610
    "\n",
    "# Optimization iteration\n",
    "for itr in range(ITR):\n",
    "\n",
    "    # Forward, to calculate loss function\n",
Q
Quleaf 已提交
611
    "    loss, cir = vqe()\n",
Q
Quleaf 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    "\n",
    "    # Backpropagate to minimize the loss function\n",
    "    loss.backward()\n",
    "    opt.minimize(loss)\n",
    "    opt.clear_grad()\n",
    "\n",
    "    # Record the learning curve\n",
    "    loss_list.append(loss.numpy()[0])\n",
    "    parameter_list.append(vqe.parameters()[0].numpy())\n",
    "    if itr % 10 == 0:\n",
    "        print('iter:', itr, '  loss: %.4f' % loss.numpy())\n",
    "        \n",
    "# Train the noiseless VQE in the same way\n",
    "print('========== Training Noise Free VQE ==========')\n",
    "loss_list_no_noise = []\n",
    "parameter_list_no_noise = []\n",
    "\n",
Q
Quleaf 已提交
629
    "vqe_no_noise = vqe_noise_free()\n",
Q
Quleaf 已提交
630 631 632 633
    "opt_no_noise = paddle.optimizer.Adam(learning_rate = LR, parameters = vqe_no_noise.parameters())    \n",
    "\n",
    "for itr in range(ITR):\n",
    "\n",
Q
Quleaf 已提交
634
    "    loss, cir = vqe_no_noise()\n",
Q
Quleaf 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    "\n",
    "    loss.backward()\n",
    "    opt_no_noise.minimize(loss)\n",
    "    opt_no_noise.clear_grad()\n",
    "\n",
    "    loss_list_no_noise.append(loss.numpy()[0])\n",
    "    parameter_list_no_noise.append(vqe_no_noise.parameters()[0].numpy())\n",
    "    if itr % 10 == 0:\n",
    "        print('iter:', itr, '  loss: %.4f' % loss.numpy())\n",
    "\n",
    "\n",
    "print('\\nGround state energy from noisy circuit: ', loss_list[-1], \"Ha\")\n",
    "print('Ground state energy from noiseless circuit: ', loss_list_no_noise[-1], \"Ha\")\n",
    "print('Actual ground state energy: ', np.linalg.eigh(H_matrix)[0][0], \"Ha\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As we can see, noisy VQE behaves much worse than the noiseless version as expected and couldn't satisfy chemical accuracy $\\varepsilon = 0.0016$ Ha."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Conclusion\n",
    "\n",
    "Noise is an unavoidable feature of quantum devices in the NISQ era. Therefore, designing robust quantum algorithms under the presence of noise and further developing error mitigation schemes are two important research directions. With the noise module in Paddle Quantum, we hope to provide a platform simulating real physical systems and help developing near-term quantum computation applications. Standing together with the research community, the noise module will help us explore what we can achieve with noisy devices, design more robust quantum algorithms, and eventually leads to trustworthy quantum solutions in areas including AI and quantum chemistry.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "---\n",
    "\n",
    "## References\n",
    "\n",
    "[1] Iverson, J. K., & Preskill, J. Coherence in logical quantum channels. [New Journal of Physics, 22(7), 073066 (2020).](https://iopscience.iop.org/article/10.1088/1367-2630/ab8e5c)\n",
    "\n",
    "[2] Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information. Cambridge university press (2010).\n",
    "\n",
    "[3] Preskill, J. Quantum Information Lecture Notes. Chapter 3 (2018).\n",
    "\n",
    "[4] Chirolli, L., & Burkard, G. Decoherence in solid-state qubits. [Advances in Physics, 57(3), 225-285 (2008).](https://www.tandfonline.com/doi/abs/10.1080/00018730802218067)\n",
    "\n",
    "[5] Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. [Nat. Commun. 5, 4213 (2014).](https://www.nature.com/articles/ncomms5213)"
   ]
  }
 ],
 "metadata": {
Q
Quleaf 已提交
688 689 690
  "interpreter": {
   "hash": "4261e4eef114648d37e4a637967bd8d2966507f48b194e5e336ba3366b740269"
  },
Q
Quleaf 已提交
691
  "kernelspec": {
Q
Quleaf 已提交
692
   "display_name": "Python 3.8.13 ('pq-ns-icode')",
Q
Quleaf 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Q
Quleaf 已提交
706
   "version": "3.8.13"
Q
Quleaf 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  },
  "varInspector": {
   "cols": {
    "lenName": 16,
    "lenType": 16,
    "lenVar": 40
   },
   "kernels_config": {
    "python": {
     "delete_cmd_postfix": "",
     "delete_cmd_prefix": "del ",
     "library": "var_list.py",
     "varRefreshCmd": "print(var_dic_list())"
    },
    "r": {
     "delete_cmd_postfix": ") ",
     "delete_cmd_prefix": "rm(",
     "library": "var_list.r",
     "varRefreshCmd": "cat(var_dic_list()) "
    }
   },
   "types_to_exclude": [
    "module",
    "function",
    "builtin_function_or_method",
    "instance",
    "_Feature"
   ],
   "window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}