dynamic_gru.py 2.2 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lifuchen 已提交
14 15 16
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers

L
lifuchen 已提交
17

L
lifuchen 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
class DynamicGRU(dg.Layer):
    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 candidate_activation='tanh',
                 h_0=None,
                 origin_mode=False,
                 init_size=None):
        super(DynamicGRU, self).__init__()
        self.gru_unit = dg.GRUUnit(
            size * 3,
            param_attr=param_attr,
            bias_attr=bias_attr,
            activation=candidate_activation,
            gate_activation=gate_activation,
            origin_mode=origin_mode)
        self.size = size
        self.h_0 = h_0
        self.is_reverse = is_reverse

    def forward(self, inputs):
        """
        Dynamic GRU block.
        
        Args:
            input (Variable): Shape(B, T, C), dtype: float32. The input value.
        Returns:
            output (Variable), Shape(B, T, C), the result compute by GRU.
        """
        hidden = self.h_0
        res = []
        for i in range(inputs.shape[1]):
            if self.is_reverse:
                i = inputs.shape[1] - 1 - i
            input_ = inputs[:, i:i + 1, :]
56
            input_ = layers.reshape(input_, [-1, input_.shape[2]])
L
lifuchen 已提交
57
            hidden, reset, gate = self.gru_unit(input_, hidden)
58
            hidden_ = layers.reshape(hidden, [-1, 1, hidden.shape[1]])
L
lifuchen 已提交
59 60 61 62 63
            res.append(hidden_)
        if self.is_reverse:
            res = res[::-1]
        res = layers.concat(res, axis=1)
        return res