Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Parakeet
提交
fc84ca2d
P
Parakeet
项目概览
PaddlePaddle
/
Parakeet
通知
10
Star
3
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Parakeet
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fc84ca2d
编写于
2月 11, 2020
作者:
L
lifuchen
提交者:
chenfeiyu
2月 11, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Adjust the directory structure
上级
5b2d2a37
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
354 addition
and
0 deletion
+354
-0
parakeet/models/transformerTTS/post_convnet.py
parakeet/models/transformerTTS/post_convnet.py
+89
-0
parakeet/models/transformerTTS/prenet.py
parakeet/models/transformerTTS/prenet.py
+39
-0
parakeet/modules/customized.py
parakeet/modules/customized.py
+117
-0
parakeet/modules/dynamic_gru.py
parakeet/modules/dynamic_gru.py
+52
-0
parakeet/modules/ffn.py
parakeet/modules/ffn.py
+57
-0
未找到文件。
parakeet/models/transformerTTS/post_convnet.py
0 → 100644
浏览文件 @
fc84ca2d
import
math
import
paddle.fluid.dygraph
as
dg
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
from
parakeet.modules.customized
import
Conv1D
class
PostConvNet
(
dg
.
Layer
):
def
__init__
(
self
,
n_mels
=
80
,
num_hidden
=
512
,
filter_size
=
5
,
padding
=
0
,
num_conv
=
5
,
outputs_per_step
=
1
,
use_cudnn
=
True
,
dropout
=
0.1
,
batchnorm_last
=
False
):
super
(
PostConvNet
,
self
).
__init__
()
self
.
dropout
=
dropout
self
.
num_conv
=
num_conv
self
.
batchnorm_last
=
batchnorm_last
self
.
conv_list
=
[]
k
=
math
.
sqrt
(
1
/
(
n_mels
*
outputs_per_step
))
self
.
conv_list
.
append
(
Conv1D
(
in_channels
=
n_mels
*
outputs_per_step
,
out_channels
=
num_hidden
,
filter_size
=
filter_size
,
padding
=
padding
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
XavierInitializer
()),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
k
,
high
=
k
)),
use_cudnn
=
use_cudnn
,
data_format
=
"NCT"
))
k
=
math
.
sqrt
(
1
/
num_hidden
)
for
_
in
range
(
1
,
num_conv
-
1
):
self
.
conv_list
.
append
(
Conv1D
(
in_channels
=
num_hidden
,
out_channels
=
num_hidden
,
filter_size
=
filter_size
,
padding
=
padding
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
XavierInitializer
()),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
k
,
high
=
k
)),
use_cudnn
=
use_cudnn
,
data_format
=
"NCT"
)
)
self
.
conv_list
.
append
(
Conv1D
(
in_channels
=
num_hidden
,
out_channels
=
n_mels
*
outputs_per_step
,
filter_size
=
filter_size
,
padding
=
padding
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
XavierInitializer
()),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
k
,
high
=
k
)),
use_cudnn
=
use_cudnn
,
data_format
=
"NCT"
))
for
i
,
layer
in
enumerate
(
self
.
conv_list
):
self
.
add_sublayer
(
"conv_list_{}"
.
format
(
i
),
layer
)
self
.
batch_norm_list
=
[
dg
.
BatchNorm
(
num_hidden
,
data_layout
=
'NCHW'
)
for
_
in
range
(
num_conv
-
1
)]
if
self
.
batchnorm_last
:
self
.
batch_norm_list
.
append
(
dg
.
BatchNorm
(
n_mels
*
outputs_per_step
,
data_layout
=
'NCHW'
))
for
i
,
layer
in
enumerate
(
self
.
batch_norm_list
):
self
.
add_sublayer
(
"batch_norm_list_{}"
.
format
(
i
),
layer
)
def
forward
(
self
,
input
):
"""
Post Conv Net.
Args:
input (Variable): Shape(B, T, C), dtype: float32. The input value.
Returns:
output (Variable), Shape(B, T, C), the result after postconvnet.
"""
input
=
layers
.
transpose
(
input
,
[
0
,
2
,
1
])
len
=
input
.
shape
[
-
1
]
for
i
in
range
(
self
.
num_conv
-
1
):
batch_norm
=
self
.
batch_norm_list
[
i
]
conv
=
self
.
conv_list
[
i
]
input
=
layers
.
dropout
(
layers
.
tanh
(
batch_norm
(
conv
(
input
)[:,:,:
len
])),
self
.
dropout
)
conv
=
self
.
conv_list
[
self
.
num_conv
-
1
]
input
=
conv
(
input
)[:,:,:
len
]
if
self
.
batchnorm_last
:
batch_norm
=
self
.
batch_norm_list
[
self
.
num_conv
-
1
]
input
=
layers
.
dropout
(
batch_norm
(
input
),
self
.
dropout
)
output
=
layers
.
transpose
(
input
,
[
0
,
2
,
1
])
return
output
\ No newline at end of file
parakeet/models/transformerTTS/prenet.py
0 → 100644
浏览文件 @
fc84ca2d
import
math
import
paddle.fluid.dygraph
as
dg
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
class
PreNet
(
dg
.
Layer
):
def
__init__
(
self
,
input_size
,
hidden_size
,
output_size
,
dropout_rate
=
0.2
):
"""
:param input_size: dimension of input
:param hidden_size: dimension of hidden unit
:param output_size: dimension of output
"""
super
(
PreNet
,
self
).
__init__
()
self
.
input_size
=
input_size
self
.
hidden_size
=
hidden_size
self
.
output_size
=
output_size
self
.
dropout_rate
=
dropout_rate
k
=
math
.
sqrt
(
1
/
input_size
)
self
.
linear1
=
dg
.
Linear
(
input_size
,
hidden_size
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
XavierInitializer
()),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
k
,
high
=
k
)))
k
=
math
.
sqrt
(
1
/
hidden_size
)
self
.
linear2
=
dg
.
Linear
(
hidden_size
,
output_size
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
XavierInitializer
()),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
k
,
high
=
k
)))
def
forward
(
self
,
x
):
"""
Pre Net before passing through the network.
Args:
x (Variable): Shape(B, T, C), dtype: float32. The input value.
Returns:
x (Variable), Shape(B, T, C), the result after pernet.
"""
x
=
layers
.
dropout
(
layers
.
relu
(
self
.
linear1
(
x
)),
self
.
dropout_rate
)
x
=
layers
.
dropout
(
layers
.
relu
(
self
.
linear2
(
x
)),
self
.
dropout_rate
)
return
x
parakeet/modules/customized.py
0 → 100644
浏览文件 @
fc84ca2d
from
paddle
import
fluid
import
paddle.fluid.dygraph
as
dg
class
Conv1D
(
dg
.
Layer
):
"""
A convolution 1D block implemented with Conv2D. Form simplicity and
ensuring the output has the same length as the input, it does not allow
stride > 1.
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
filter_size
=
3
,
padding
=
0
,
dilation
=
1
,
stride
=
1
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
,
data_format
=
'NCT'
,
dtype
=
"float32"
):
super
(
Conv1D
,
self
).
__init__
(
dtype
=
dtype
)
self
.
padding
=
padding
self
.
in_channels
=
in_channels
self
.
num_filters
=
out_channels
self
.
filter_size
=
filter_size
self
.
stride
=
stride
self
.
dilation
=
dilation
self
.
padding
=
padding
self
.
act
=
act
self
.
data_format
=
data_format
self
.
conv
=
dg
.
Conv2D
(
num_channels
=
in_channels
,
num_filters
=
out_channels
,
filter_size
=
(
1
,
filter_size
),
stride
=
(
1
,
stride
),
dilation
=
(
1
,
dilation
),
padding
=
(
0
,
padding
),
groups
=
groups
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
use_cudnn
=
use_cudnn
,
act
=
act
,
dtype
=
dtype
)
def
forward
(
self
,
x
):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the outputs, where C_out means
output channels (num_filters).
"""
if
self
.
data_format
==
'NTC'
:
x
=
fluid
.
layers
.
transpose
(
x
,
[
0
,
2
,
1
])
x
=
fluid
.
layers
.
unsqueeze
(
x
,
[
2
])
x
=
self
.
conv
(
x
)
x
=
fluid
.
layers
.
squeeze
(
x
,
[
2
])
if
self
.
data_format
==
'NTC'
:
x
=
fluid
.
layers
.
transpose
(
x
,
[
0
,
2
,
1
])
return
x
class
Pool1D
(
dg
.
Layer
):
"""
A Pool 1D block implemented with Pool2D.
"""
def
__init__
(
self
,
pool_size
=-
1
,
pool_type
=
'max'
,
pool_stride
=
1
,
pool_padding
=
0
,
global_pooling
=
False
,
use_cudnn
=
True
,
ceil_mode
=
False
,
exclusive
=
True
,
data_format
=
'NCT'
):
super
(
Pool1D
,
self
).
__init__
()
self
.
pool_size
=
pool_size
self
.
pool_type
=
pool_type
self
.
pool_stride
=
pool_stride
self
.
pool_padding
=
pool_padding
self
.
global_pooling
=
global_pooling
self
.
use_cudnn
=
use_cudnn
self
.
ceil_mode
=
ceil_mode
self
.
exclusive
=
exclusive
self
.
data_format
=
data_format
self
.
pool2d
=
dg
.
Pool2D
([
1
,
pool_size
],
pool_type
=
pool_type
,
pool_stride
=
[
1
,
pool_stride
],
pool_padding
=
[
0
,
pool_padding
],
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
,
ceil_mode
=
ceil_mode
,
exclusive
=
exclusive
)
def
forward
(
self
,
x
):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the outputs, where C_out means
output channels (num_filters).
"""
if
self
.
data_format
==
'NTC'
:
x
=
fluid
.
layers
.
transpose
(
x
,
[
0
,
2
,
1
])
x
=
fluid
.
layers
.
unsqueeze
(
x
,
[
2
])
x
=
self
.
pool2d
(
x
)
x
=
fluid
.
layers
.
squeeze
(
x
,
[
2
])
if
self
.
data_format
==
'NTC'
:
x
=
fluid
.
layers
.
transpose
(
x
,
[
0
,
2
,
1
])
return
x
parakeet/modules/dynamic_gru.py
0 → 100644
浏览文件 @
fc84ca2d
import
paddle.fluid.dygraph
as
dg
import
paddle.fluid.layers
as
layers
class
DynamicGRU
(
dg
.
Layer
):
def
__init__
(
self
,
size
,
param_attr
=
None
,
bias_attr
=
None
,
is_reverse
=
False
,
gate_activation
=
'sigmoid'
,
candidate_activation
=
'tanh'
,
h_0
=
None
,
origin_mode
=
False
,
init_size
=
None
):
super
(
DynamicGRU
,
self
).
__init__
()
self
.
gru_unit
=
dg
.
GRUUnit
(
size
*
3
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
activation
=
candidate_activation
,
gate_activation
=
gate_activation
,
origin_mode
=
origin_mode
)
self
.
size
=
size
self
.
h_0
=
h_0
self
.
is_reverse
=
is_reverse
def
forward
(
self
,
inputs
):
"""
Dynamic GRU block.
Args:
input (Variable): Shape(B, T, C), dtype: float32. The input value.
Returns:
output (Variable), Shape(B, T, C), the result compute by GRU.
"""
hidden
=
self
.
h_0
res
=
[]
for
i
in
range
(
inputs
.
shape
[
1
]):
if
self
.
is_reverse
:
i
=
inputs
.
shape
[
1
]
-
1
-
i
input_
=
inputs
[:,
i
:
i
+
1
,
:]
input_
=
layers
.
reshape
(
input_
,
[
-
1
,
input_
.
shape
[
2
]],
inplace
=
False
)
hidden
,
reset
,
gate
=
self
.
gru_unit
(
input_
,
hidden
)
hidden_
=
layers
.
reshape
(
hidden
,
[
-
1
,
1
,
hidden
.
shape
[
1
]],
inplace
=
False
)
res
.
append
(
hidden_
)
if
self
.
is_reverse
:
res
=
res
[::
-
1
]
res
=
layers
.
concat
(
res
,
axis
=
1
)
return
res
parakeet/modules/ffn.py
0 → 100644
浏览文件 @
fc84ca2d
import
paddle.fluid.dygraph
as
dg
import
paddle.fluid.layers
as
layers
import
paddle.fluid
as
fluid
import
math
from
parakeet.modules.customized
import
Conv1D
class
PositionwiseFeedForward
(
dg
.
Layer
):
''' A two-feed-forward-layer module '''
def
__init__
(
self
,
d_in
,
num_hidden
,
filter_size
,
padding
=
0
,
use_cudnn
=
True
,
dropout
=
0.1
):
super
(
PositionwiseFeedForward
,
self
).
__init__
()
self
.
num_hidden
=
num_hidden
self
.
use_cudnn
=
use_cudnn
self
.
dropout
=
dropout
k
=
math
.
sqrt
(
1
/
d_in
)
self
.
w_1
=
Conv1D
(
in_channels
=
d_in
,
out_channels
=
num_hidden
,
filter_size
=
filter_size
,
padding
=
padding
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
XavierInitializer
()),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
k
,
high
=
k
)),
use_cudnn
=
use_cudnn
,
data_format
=
"NTC"
)
k
=
math
.
sqrt
(
1
/
num_hidden
)
self
.
w_2
=
Conv1D
(
in_channels
=
num_hidden
,
out_channels
=
d_in
,
filter_size
=
filter_size
,
padding
=
padding
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
XavierInitializer
()),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
k
,
high
=
k
)),
use_cudnn
=
use_cudnn
,
data_format
=
"NTC"
)
self
.
layer_norm
=
dg
.
LayerNorm
(
d_in
)
def
forward
(
self
,
input
):
"""
Feed Forward Network.
Args:
input (Variable): Shape(B, T, C), dtype: float32. The input value.
Returns:
output (Variable), Shape(B, T, C), the result after FFN.
"""
#FFN Networt
x
=
self
.
w_2
(
layers
.
relu
(
self
.
w_1
(
input
)))
# dropout
x
=
layers
.
dropout
(
x
,
self
.
dropout
)
# residual connection
x
=
x
+
input
#layer normalization
output
=
self
.
layer_norm
(
x
)
return
output
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录