utils.py 2.1 KB
Newer Older
C
chenfeiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import division
C
chenfeiyu 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
import os
import soundfile as sf
from collections import OrderedDict

from paddle import fluid
import paddle.fluid.dygraph as dg


def make_output_tree(output_dir):
    checkpoint_dir = os.path.join(output_dir, "checkpoints")
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)

    state_dir = os.path.join(output_dir, "states")
    if not os.path.exists(state_dir):
        os.makedirs(state_dir)


C
chenfeiyu 已提交
34
def eval_model(model, valid_loader, output_dir, iteration, sample_rate):
C
chenfeiyu 已提交
35 36 37 38
    model.eval()
    for i, batch in enumerate(valid_loader):
        # print("sentence {}".format(i))
        path = os.path.join(output_dir,
C
chenfeiyu 已提交
39
                            "sentence_{}_step_{}.wav".format(i, iteration))
C
chenfeiyu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        audio_clips, mel_specs, audio_starts = batch
        wav_var = model.synthesis(mel_specs)
        wav_np = wav_var.numpy()[0]
        sf.write(path, wav_np, samplerate=sample_rate)
        print("generated {}".format(path))


def load_wavenet(model, path):
    wavenet_dict, _ = dg.load_dygraph(path)
    encoder_dict = OrderedDict()
    teacher_dict = OrderedDict()
    for k, v in wavenet_dict.items():
        if k.startswith("encoder."):
            encoder_dict[k.split('.', 1)[1]] = v
        else:
            # k starts with "decoder."
            teacher_dict[k.split('.', 1)[1]] = v

    model.encoder.set_dict(encoder_dict)
    model.teacher.set_dict(teacher_dict)
    print("loaded the encoder part and teacher part from wavenet model.")