# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import soundfile as sf from collections import OrderedDict from paddle import fluid import paddle.fluid.dygraph as dg def make_output_tree(output_dir): checkpoint_dir = os.path.join(output_dir, "checkpoints") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) state_dir = os.path.join(output_dir, "states") if not os.path.exists(state_dir): os.makedirs(state_dir) def eval_model(model, valid_loader, output_dir, iteration, sample_rate): model.eval() for i, batch in enumerate(valid_loader): # print("sentence {}".format(i)) path = os.path.join(output_dir, "sentence_{}_step_{}.wav".format(i, iteration)) audio_clips, mel_specs, audio_starts = batch wav_var = model.synthesis(mel_specs) wav_np = wav_var.numpy()[0] sf.write(path, wav_np, samplerate=sample_rate) print("generated {}".format(path)) def load_wavenet(model, path): wavenet_dict, _ = dg.load_dygraph(path) encoder_dict = OrderedDict() teacher_dict = OrderedDict() for k, v in wavenet_dict.items(): if k.startswith("encoder."): encoder_dict[k.split('.', 1)[1]] = v else: # k starts with "decoder." teacher_dict[k.split('.', 1)[1]] = v model.encoder.set_dict(encoder_dict) model.teacher.set_dict(teacher_dict) print("loaded the encoder part and teacher part from wavenet model.")