train.py 8.7 KB
Newer Older
C
chenfeiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import division
C
chenfeiyu 已提交
16 17 18 19 20 21 22 23
import os
import sys
import argparse
import ruamel.yaml
import random
from tqdm import tqdm
import pickle
import numpy as np
走神的阿圆's avatar
走神的阿圆 已提交
24
from visualdl import LogWriter
C
chenfeiyu 已提交
25 26 27

import paddle.fluid.dygraph as dg
from paddle import fluid
28
fluid.require_version('1.8.0')
C
chenfeiyu 已提交
29 30 31

from parakeet.models.wavenet import WaveNet, UpsampleNet
from parakeet.models.clarinet import STFT, Clarinet, ParallelWaveNet
32
from parakeet.data import TransformDataset, SliceDataset, CacheDataset, RandomSampler, SequentialSampler, DataCargo
C
chenfeiyu 已提交
33
from parakeet.utils.layer_tools import summary, freeze
34
from parakeet.utils import io
C
chenfeiyu 已提交
35

C
chenfeiyu 已提交
36 37 38
from utils import make_output_tree, eval_model, load_wavenet

# import dataset from wavenet
C
chenfeiyu 已提交
39 40 41 42 43
sys.path.append("../wavenet")
from data import LJSpeechMetaData, Transform, DataCollector

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
C
chenfeiyu 已提交
44
        description="Train a ClariNet model with LJspeech and a trained WaveNet model."
C
chenfeiyu 已提交
45
    )
C
chenfeiyu 已提交
46 47 48 49 50 51 52 53 54 55 56
    parser.add_argument("--config", type=str, help="path of the config file")
    parser.add_argument("--device", type=int, default=-1, help="device to use")
    parser.add_argument("--data", type=str, help="path of LJspeech dataset")

    g = parser.add_mutually_exclusive_group()
    g.add_argument("--checkpoint", type=str, help="checkpoint to resume from")
    g.add_argument(
        "--iteration",
        type=int,
        help="the iteration of the checkpoint to load from output directory")

C
chenfeiyu 已提交
57
    parser.add_argument(
C
chenfeiyu 已提交
58 59
        "--wavenet", type=str, help="wavenet checkpoint to use")

C
chenfeiyu 已提交
60
    parser.add_argument(
C
chenfeiyu 已提交
61
        "output",
C
chenfeiyu 已提交
62 63
        type=str,
        default="experiment",
C
chenfeiyu 已提交
64 65
        help="path to save experiment results")

C
chenfeiyu 已提交
66 67 68 69
    args = parser.parse_args()
    with open(args.config, 'rt') as f:
        config = ruamel.yaml.safe_load(f)

70 71 72 73 74 75 76
    if args.device == -1:
        place = fluid.CPUPlace()
    else:
        place = fluid.CUDAPlace(args.device)

    dg.enable_dygraph(place)

77 78 79 80
    print("Command Line args: ")
    for k, v in vars(args).items():
        print("{}: {}".format(k, v))

C
chenfeiyu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93
    ljspeech_meta = LJSpeechMetaData(args.data)

    data_config = config["data"]
    sample_rate = data_config["sample_rate"]
    n_fft = data_config["n_fft"]
    win_length = data_config["win_length"]
    hop_length = data_config["hop_length"]
    n_mels = data_config["n_mels"]
    train_clip_seconds = data_config["train_clip_seconds"]
    transform = Transform(sample_rate, n_fft, win_length, hop_length, n_mels)
    ljspeech = TransformDataset(ljspeech_meta, transform)

    valid_size = data_config["valid_size"]
94 95 96
    ljspeech_valid = CacheDataset(SliceDataset(ljspeech, 0, valid_size))
    ljspeech_train = CacheDataset(
        SliceDataset(ljspeech, valid_size, len(ljspeech)))
C
chenfeiyu 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

    teacher_config = config["teacher"]
    n_loop = teacher_config["n_loop"]
    n_layer = teacher_config["n_layer"]
    filter_size = teacher_config["filter_size"]
    context_size = 1 + n_layer * sum([filter_size**i for i in range(n_loop)])
    print("context size is {} samples".format(context_size))
    train_batch_fn = DataCollector(context_size, sample_rate, hop_length,
                                   train_clip_seconds)
    valid_batch_fn = DataCollector(
        context_size, sample_rate, hop_length, train_clip_seconds, valid=True)

    batch_size = data_config["batch_size"]
    train_cargo = DataCargo(
        ljspeech_train,
        train_batch_fn,
        batch_size,
        sampler=RandomSampler(ljspeech_train))

    # only batch=1 for validation is enabled
    valid_cargo = DataCargo(
        ljspeech_valid,
        valid_batch_fn,
        batch_size=1,
        sampler=SequentialSampler(ljspeech_valid))

    make_output_tree(args.output)

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    # conditioner(upsampling net)
    conditioner_config = config["conditioner"]
    upsampling_factors = conditioner_config["upsampling_factors"]
    upsample_net = UpsampleNet(upscale_factors=upsampling_factors)
    freeze(upsample_net)

    residual_channels = teacher_config["residual_channels"]
    loss_type = teacher_config["loss_type"]
    output_dim = teacher_config["output_dim"]
    log_scale_min = teacher_config["log_scale_min"]
    assert loss_type == "mog" and output_dim == 3, \
        "the teacher wavenet should be a wavenet with single gaussian output"

    teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels,
                      filter_size, loss_type, log_scale_min)
    freeze(teacher)

    student_config = config["student"]
    n_loops = student_config["n_loops"]
    n_layers = student_config["n_layers"]
    student_residual_channels = student_config["residual_channels"]
    student_filter_size = student_config["filter_size"]
    student_log_scale_min = student_config["log_scale_min"]
    student = ParallelWaveNet(n_loops, n_layers, student_residual_channels,
                              n_mels, student_filter_size)

    stft_config = config["stft"]
    stft = STFT(
        n_fft=stft_config["n_fft"],
        hop_length=stft_config["hop_length"],
        win_length=stft_config["win_length"])

    lmd = config["loss"]["lmd"]
    model = Clarinet(upsample_net, teacher, student, stft,
                     student_log_scale_min, lmd)
    summary(model)

    # optim
    train_config = config["train"]
    learning_rate = train_config["learning_rate"]
    anneal_rate = train_config["anneal_rate"]
    anneal_interval = train_config["anneal_interval"]
    lr_scheduler = dg.ExponentialDecay(
        learning_rate, anneal_interval, anneal_rate, staircase=True)
    gradiant_max_norm = train_config["gradient_max_norm"]
    optim = fluid.optimizer.Adam(
        lr_scheduler,
        parameter_list=model.parameters(),
        grad_clip=fluid.clip.ClipByGlobalNorm(gradiant_max_norm))

    # train
    max_iterations = train_config["max_iterations"]
    checkpoint_interval = train_config["checkpoint_interval"]
    eval_interval = train_config["eval_interval"]
    checkpoint_dir = os.path.join(args.output, "checkpoints")
    state_dir = os.path.join(args.output, "states")
    log_dir = os.path.join(args.output, "log")
走神的阿圆's avatar
走神的阿圆 已提交
182
    writer = LogWriter(log_dir)
183 184 185 186

    if args.checkpoint is not None:
        iteration = io.load_parameters(
            model, optim, checkpoint_path=args.checkpoint)
C
chenfeiyu 已提交
187
    else:
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        iteration = io.load_parameters(
            model,
            optim,
            checkpoint_dir=checkpoint_dir,
            iteration=args.iteration)

    if iteration == 0:
        assert args.wavenet is not None, "When training afresh, a trained wavenet model should be provided."
        load_wavenet(model, args.wavenet)

    # loader
    train_loader = fluid.io.DataLoader.from_generator(
        capacity=10, return_list=True)
    train_loader.set_batch_generator(train_cargo, place)

    valid_loader = fluid.io.DataLoader.from_generator(
        capacity=10, return_list=True)
    valid_loader.set_batch_generator(valid_cargo, place)

    # training loop
    global_step = iteration + 1
    iterator = iter(tqdm(train_loader))
    while global_step <= max_iterations:
        try:
            batch = next(iterator)
        except StopIteration as e:
            iterator = iter(tqdm(train_loader))
            batch = next(iterator)

        audios, mels, audio_starts = batch
        model.train()
        loss_dict = model(
            audios, mels, audio_starts, clip_kl=global_step > 500)

        writer.add_scalar("learning_rate",
                          optim._learning_rate.step().numpy()[0], global_step)
        for k, v in loss_dict.items():
            writer.add_scalar("loss/{}".format(k), v.numpy()[0], global_step)

        l = loss_dict["loss"]
        step_loss = l.numpy()[0]
        print("[train] global_step: {} loss: {:<8.6f}".format(global_step,
                                                              step_loss))

        l.backward()
        optim.minimize(l)
        optim.clear_gradients()

        if global_step % eval_interval == 0:
            # evaluate on valid dataset
            eval_model(model, valid_loader, state_dir, global_step,
                       sample_rate)
        if global_step % checkpoint_interval == 0:
            io.save_parameters(checkpoint_dir, global_step, model, optim)

        global_step += 1