# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import sys import argparse import ruamel.yaml import random from tqdm import tqdm import pickle import numpy as np from visualdl import LogWriter import paddle.fluid.dygraph as dg from paddle import fluid fluid.require_version('1.8.0') from parakeet.models.wavenet import WaveNet, UpsampleNet from parakeet.models.clarinet import STFT, Clarinet, ParallelWaveNet from parakeet.data import TransformDataset, SliceDataset, CacheDataset, RandomSampler, SequentialSampler, DataCargo from parakeet.utils.layer_tools import summary, freeze from parakeet.utils import io from utils import make_output_tree, eval_model, load_wavenet # import dataset from wavenet sys.path.append("../wavenet") from data import LJSpeechMetaData, Transform, DataCollector if __name__ == "__main__": parser = argparse.ArgumentParser( description="Train a ClariNet model with LJspeech and a trained WaveNet model." ) parser.add_argument("--config", type=str, help="path of the config file") parser.add_argument("--device", type=int, default=-1, help="device to use") parser.add_argument("--data", type=str, help="path of LJspeech dataset") g = parser.add_mutually_exclusive_group() g.add_argument("--checkpoint", type=str, help="checkpoint to resume from") g.add_argument( "--iteration", type=int, help="the iteration of the checkpoint to load from output directory") parser.add_argument( "--wavenet", type=str, help="wavenet checkpoint to use") parser.add_argument( "output", type=str, default="experiment", help="path to save experiment results") args = parser.parse_args() with open(args.config, 'rt') as f: config = ruamel.yaml.safe_load(f) if args.device == -1: place = fluid.CPUPlace() else: place = fluid.CUDAPlace(args.device) dg.enable_dygraph(place) print("Command Line args: ") for k, v in vars(args).items(): print("{}: {}".format(k, v)) ljspeech_meta = LJSpeechMetaData(args.data) data_config = config["data"] sample_rate = data_config["sample_rate"] n_fft = data_config["n_fft"] win_length = data_config["win_length"] hop_length = data_config["hop_length"] n_mels = data_config["n_mels"] train_clip_seconds = data_config["train_clip_seconds"] transform = Transform(sample_rate, n_fft, win_length, hop_length, n_mels) ljspeech = TransformDataset(ljspeech_meta, transform) valid_size = data_config["valid_size"] ljspeech_valid = CacheDataset(SliceDataset(ljspeech, 0, valid_size)) ljspeech_train = CacheDataset( SliceDataset(ljspeech, valid_size, len(ljspeech))) teacher_config = config["teacher"] n_loop = teacher_config["n_loop"] n_layer = teacher_config["n_layer"] filter_size = teacher_config["filter_size"] context_size = 1 + n_layer * sum([filter_size**i for i in range(n_loop)]) print("context size is {} samples".format(context_size)) train_batch_fn = DataCollector(context_size, sample_rate, hop_length, train_clip_seconds) valid_batch_fn = DataCollector( context_size, sample_rate, hop_length, train_clip_seconds, valid=True) batch_size = data_config["batch_size"] train_cargo = DataCargo( ljspeech_train, train_batch_fn, batch_size, sampler=RandomSampler(ljspeech_train)) # only batch=1 for validation is enabled valid_cargo = DataCargo( ljspeech_valid, valid_batch_fn, batch_size=1, sampler=SequentialSampler(ljspeech_valid)) make_output_tree(args.output) # conditioner(upsampling net) conditioner_config = config["conditioner"] upsampling_factors = conditioner_config["upsampling_factors"] upsample_net = UpsampleNet(upscale_factors=upsampling_factors) freeze(upsample_net) residual_channels = teacher_config["residual_channels"] loss_type = teacher_config["loss_type"] output_dim = teacher_config["output_dim"] log_scale_min = teacher_config["log_scale_min"] assert loss_type == "mog" and output_dim == 3, \ "the teacher wavenet should be a wavenet with single gaussian output" teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels, filter_size, loss_type, log_scale_min) freeze(teacher) student_config = config["student"] n_loops = student_config["n_loops"] n_layers = student_config["n_layers"] student_residual_channels = student_config["residual_channels"] student_filter_size = student_config["filter_size"] student_log_scale_min = student_config["log_scale_min"] student = ParallelWaveNet(n_loops, n_layers, student_residual_channels, n_mels, student_filter_size) stft_config = config["stft"] stft = STFT( n_fft=stft_config["n_fft"], hop_length=stft_config["hop_length"], win_length=stft_config["win_length"]) lmd = config["loss"]["lmd"] model = Clarinet(upsample_net, teacher, student, stft, student_log_scale_min, lmd) summary(model) # optim train_config = config["train"] learning_rate = train_config["learning_rate"] anneal_rate = train_config["anneal_rate"] anneal_interval = train_config["anneal_interval"] lr_scheduler = dg.ExponentialDecay( learning_rate, anneal_interval, anneal_rate, staircase=True) gradiant_max_norm = train_config["gradient_max_norm"] optim = fluid.optimizer.Adam( lr_scheduler, parameter_list=model.parameters(), grad_clip=fluid.clip.ClipByGlobalNorm(gradiant_max_norm)) # train max_iterations = train_config["max_iterations"] checkpoint_interval = train_config["checkpoint_interval"] eval_interval = train_config["eval_interval"] checkpoint_dir = os.path.join(args.output, "checkpoints") state_dir = os.path.join(args.output, "states") log_dir = os.path.join(args.output, "log") writer = LogWriter(log_dir) if args.checkpoint is not None: iteration = io.load_parameters( model, optim, checkpoint_path=args.checkpoint) else: iteration = io.load_parameters( model, optim, checkpoint_dir=checkpoint_dir, iteration=args.iteration) if iteration == 0: assert args.wavenet is not None, "When training afresh, a trained wavenet model should be provided." load_wavenet(model, args.wavenet) # loader train_loader = fluid.io.DataLoader.from_generator( capacity=10, return_list=True) train_loader.set_batch_generator(train_cargo, place) valid_loader = fluid.io.DataLoader.from_generator( capacity=10, return_list=True) valid_loader.set_batch_generator(valid_cargo, place) # training loop global_step = iteration + 1 iterator = iter(tqdm(train_loader)) while global_step <= max_iterations: try: batch = next(iterator) except StopIteration as e: iterator = iter(tqdm(train_loader)) batch = next(iterator) audios, mels, audio_starts = batch model.train() loss_dict = model( audios, mels, audio_starts, clip_kl=global_step > 500) writer.add_scalar("learning_rate", optim._learning_rate.step().numpy()[0], global_step) for k, v in loss_dict.items(): writer.add_scalar("loss/{}".format(k), v.numpy()[0], global_step) l = loss_dict["loss"] step_loss = l.numpy()[0] print("[train] global_step: {} loss: {:<8.6f}".format(global_step, step_loss)) l.backward() optim.minimize(l) optim.clear_gradients() if global_step % eval_interval == 0: # evaluate on valid dataset eval_model(model, valid_loader, state_dir, global_step, sample_rate) if global_step % checkpoint_interval == 0: io.save_parameters(checkpoint_dir, global_step, model, optim) global_step += 1