wavenet.py 15.4 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chenfeiyu 已提交
15
import math
K
Kexin Zhao 已提交
16
import time
C
chenfeiyu 已提交
17
import itertools
K
Kexin Zhao 已提交
18 19
import numpy as np

C
chenfeiyu 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import paddle.fluid.layers.distributions as D

from parakeet.modules.weight_norm import Linear, Conv1D, Conv1DCell, Conv2DTranspose


# for wavenet with softmax loss
def quantize(values, n_bands):
    quantized = F.cast((values + 1.0) / 2.0 * n_bands, "int64")
    return quantized


def dequantize(quantized, n_bands):
    value = (F.cast(quantized, "float32") + 0.5) * (2.0 / n_bands) - 1.0
    return value


class ResidualBlock(dg.Layer):
    def __init__(self, residual_channels, condition_dim, filter_size,
                 dilation):
        super().__init__()
        dilated_channels = 2 * residual_channels
        # following clarinet's implementation, we do not have parametric residual
        # & skip connection.

        std = np.sqrt(1 / (filter_size * residual_channels))
        self.conv = Conv1DCell(
            residual_channels,
            dilated_channels,
            filter_size,
            dilation=dilation,
            causal=True,
            param_attr=I.Normal(scale=std))

        std = np.sqrt(1 / condition_dim)
        self.condition_proj = Conv1D(
            condition_dim, dilated_channels, 1, param_attr=I.Normal(scale=std))

        self.filter_size = filter_size
        self.dilation = dilation
        self.dilated_channels = dilated_channels
        self.residual_channels = residual_channels
        self.condition_dim = condition_dim

    def forward(self, x, condition=None):
        """Conv1D gated tanh Block
        
        Arguments:
            x {Variable} -- shape(batch_size, residual_channels, time_steps), the input.
        
        Keyword Arguments:
            condition {Variable} -- shape(batch_size, condition_dim, time_steps), upsampled local condition, it has the shape time steps as the input x. (default: {None})
        
        Returns:
            Variable -- shape(batch_size, residual_channels, time_steps), the output which is used as the input of the next layer.
            Variable -- shape(batch_size, residual_channels, time_steps), the output which is stacked alongside with other layers' as the output of wavenet.
        """
        time_steps = x.shape[-1]
        h = x

        # dilated conv
        h = self.conv(h)
        if h.shape[-1] != time_steps:
            h = h[:, :, :time_steps]

        # condition
        if condition:
            h += self.condition_proj(condition)

        # gated tanh
        content, gate = F.split(h, 2, dim=1)
        z = F.sigmoid(gate) * F.tanh(content)

        # projection
        residual = F.scale(z + x, math.sqrt(.5))
        skip_connection = z
        return residual, skip_connection

    def start_sequence(self):
        self.conv.start_sequence()

    def add_input(self, x, condition=None):
        """add a step input.
        
        Arguments:
            x {Variable} -- shape(batch_size, in_channels, time_steps=1), step input
        
        Keyword Arguments:
            condition {Variable} -- shape(batch_size, condition_dim, time_steps=1) (default: {None})
        
        Returns:
            Variable -- shape(batch_size, in_channels, time_steps=1), residual connection, which is the input for the next layer
            Variable -- shape(batch_size, in_channels, time_steps=1), skip connection
        """
        h = x

        # dilated conv
        h = self.conv.add_input(h)

        # condition
        if condition is not None:
            h += self.condition_proj(condition)

        # gated tanh
        content, gate = F.split(h, 2, dim=1)
        z = F.sigmoid(gate) * F.tanh(content)

        # projection
        residual = F.scale(z + x, np.sqrt(0.5))
        skip_connection = z
        return residual, skip_connection


class ResidualNet(dg.Layer):
    def __init__(self, n_loop, n_layer, residual_channels, condition_dim,
                 filter_size):
        super().__init__()
        # double the dilation at each layer in a loop(n_loop layers)
        dilations = [2**i for i in range(n_loop)] * n_layer
        self.context_size = 1 + sum(dilations)
        self.residual_blocks = dg.LayerList([
            ResidualBlock(residual_channels, condition_dim, filter_size,
                          dilation) for dilation in dilations
        ])

    def forward(self, x, condition=None):
        """n_layer layers of n_loop Residual Blocks.
        
        Arguments:
            x {Variable} -- shape(batch_size, residual_channels, time_steps), input of the residual net.
        
        Keyword Arguments:
            condition {Variable} -- shape(batch_size, condition_dim, time_steps), upsampled conditions, which has the same time steps as the input. (default: {None})
        
        Returns:
            Variable -- shape(batch_size, skip_channels, time_steps), output of the residual net.
        """

        #before_resnet = time.time()
        for i, func in enumerate(self.residual_blocks):
            x, skip = func(x, condition)
            if i == 0:
                skip_connections = skip
            else:
                skip_connections = F.scale(skip_connections + skip,
                                           np.sqrt(0.5))
        #print("resnet: ", time.time() - before_resnet)
        return skip_connections

    def start_sequence(self):
        for block in self.residual_blocks:
            block.start_sequence()

    def add_input(self, x, condition=None):
        """add step input and return step output.
        
        Arguments:
            x {Variable} -- shape(batch_size, residual_channels, time_steps=1), step input.
        
        Keyword Arguments:
            condition {Variable} -- shape(batch_size, condition_dim, time_steps=1), step condition (default: {None})
        
        Returns:
            Variable -- shape(batch_size, skip_channels, time_steps=1), step output, parameters of the output distribution.
        """

        for i, func in enumerate(self.residual_blocks):
            x, skip = func.add_input(x, condition)
            if i == 0:
                skip_connections = skip
            else:
                skip_connections = F.scale(skip_connections + skip,
                                           np.sqrt(0.5))
        return skip_connections


class WaveNet(dg.Layer):
    def __init__(self, n_loop, n_layer, residual_channels, output_dim,
                 condition_dim, filter_size, loss_type, log_scale_min):
        super().__init__()
        if loss_type not in ["softmax", "mog"]:
            raise ValueError("loss_type {} is not supported".format(loss_type))
        if loss_type == "softmax":
            self.embed = dg.Embedding((output_dim, residual_channels))
K
Kexin Zhao 已提交
206
        else:
C
chenfeiyu 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            assert output_dim % 3 == 0, "with MoG output, the output dim must be divided by 3"
            self.embed = Linear(1, residual_channels)

        self.resnet = ResidualNet(n_loop, n_layer, residual_channels,
                                  condition_dim, filter_size)
        self.context_size = self.resnet.context_size

        skip_channels = residual_channels  # assume the same channel
        self.proj1 = Linear(skip_channels, skip_channels)
        self.proj2 = Linear(skip_channels, skip_channels)
        # if loss_type is softmax, output_dim is n_vocab of waveform magnitude.
        # if loss_type is mog, output_dim is 3 * gaussian, (weight, mean and stddev)
        self.proj3 = Linear(skip_channels, output_dim)

        self.loss_type = loss_type
        self.output_dim = output_dim
        self.input_dim = 1
        self.skip_channels = skip_channels
        self.log_scale_min = log_scale_min

    def forward(self, x, condition=None):
        """(Possibly) Conditonal Wavenet.
        
        Arguments:
            x {Variable} -- shape(batch_size, time_steps), the input signal of wavenet. The waveform in 0.5 seconds.
        
        Keyword Arguments:
            conditions {Variable} -- shape(batch_size, condition_dim, 1, time_steps), the upsampled local condition. (default: {None})
        
        Returns:
            Variable -- shape(batch_size, time_steps, output_dim), output distributions at each time_steps. 
        """

        # CAUTION: rank-4 condition here
        # Causal Conv
        if self.loss_type == "softmax":
            x = F.clip(x, min=-1., max=0.99999)
            x = quantize(x, self.output_dim)
            x = self.embed(x)  # (B, T, C)
K
Kexin Zhao 已提交
246
        else:
C
chenfeiyu 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
            x = F.unsqueeze(x, axes=[-1])  # (B, T, 1)
            x = self.embed(x)  # (B, T, C)
        x = F.transpose(x, perm=[0, 2, 1])  # (B, C, T)

        # Residual & Skip-conenection & linears
        z = self.resnet(x, condition)

        z = F.transpose(z, [0, 2, 1])
        z = F.relu(self.proj2(F.relu(self.proj1(z))))

        y = self.proj3(z)
        return y

    def start_sequence(self):
        self.resnet.start_sequence()

    def add_input(self, x, condition=None):
        """add step input
        
        Arguments:
            x {Variable} -- shape(batch_size, time_steps=1), step input.
        
        Keyword Arguments:
            condition {Variable} -- shape(batch_size, condition_dim , 1, time_steps=1) (default: {None})
        
        Returns:
            Variable -- ouput parameter for the distribution.
        """

        # Causal Conv
        if self.loss_type == "softmax":
            x = quantize(x, self.output_dim)
            x = self.embed(x)  # (B, T, C), T=1
        else:
            x = F.unsqueeze(x, axes=[-1])  # (B, T, 1), T=1
            x = self.embed(x)  # (B, T, C)
        x = F.transpose(x, perm=[0, 2, 1])

        # Residual & Skip-conenection & linears
        z = self.resnet.add_input(x, condition)
        z = F.transpose(z, [0, 2, 1])
        z = F.relu(self.proj2(F.relu(self.proj1(z))))  # (B, T, C)

        # Output
        y = self.proj3(z)
        return y

    def compute_softmax_loss(self, y, t):
        """compute loss, it is basically a language_model-like loss.
        
        Arguments:
            y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution of multinomial distribution.
            t {Variable} -- shape(batch_size, time_steps - 1), target waveform.
        
        Returns:
            Variable -- shape(1,), loss
        """

        # context size is not taken into account
        y = y[:, self.context_size:, :]
        t = t[:, self.context_size:]
        t = F.clip(t, min=-1.0, max=0.99999)
        quantized = quantize(t, n_bands=self.output_dim)
        label = F.unsqueeze(quantized, axes=[-1])

        loss = F.softmax_with_cross_entropy(y, label)
        reduced_loss = F.reduce_mean(loss)
        return reduced_loss

    def sample_from_softmax(self, y):
        """sample from output distribution.
        
        Arguments:
            y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution.
        
        Returns:
            Variable -- shape(batch_size, time_steps - 1), samples.
        """

        # dequantize
        batch_size, time_steps, output_dim, = y.shape
        y = F.reshape(y, (batch_size * time_steps, output_dim))
        prob = F.softmax(y)
        quantized = F.sampling_id(prob)
        samples = dequantize(quantized, n_bands=self.output_dim)
        samples = F.reshape(samples, (batch_size, -1))
        return samples

    def compute_mog_loss(self, y, t):
        """compute the loss with an mog output distribution.
        WARNING: this is not a legal probability, but a density. so it might be greater than 1.
        
        Arguments:
            y {Variable} -- shape(batch_size, time_steps, output_dim), output distribution's parameter. To represent a mixture of Gaussians. The output for each example at each time_step consists of 3 parts. The mean, the stddev, and a weight for that gaussian.
            t {Variable} -- shape(batch_size, time_steps), target waveform.

        Returns:
            Variable -- loss, note that it is computed with the pdf of the MoG distribution. 
        """

        n_mixture = self.output_dim // 3

        # context size is not taken in to account
        y = y[:, self.context_size:, :]
        t = t[:, self.context_size:]

        w, mu, log_std = F.split(y, 3, dim=2)
        # 100.0 is just a large float
        log_std = F.clip(log_std, min=self.log_scale_min, max=100.)
        inv_std = F.exp(-log_std)
        p_mixture = F.softmax(w, axis=-1)

        t = F.unsqueeze(t, axes=[-1])
        if n_mixture > 1:
            # t = F.expand_as(t, log_std)
            t = F.expand(t, [1, 1, n_mixture])

        x_std = inv_std * (t - mu)
        exponent = F.exp(-0.5 * x_std * x_std)
        pdf_x = 1.0 / np.sqrt(2.0 * np.pi) * inv_std * exponent
        pdf_x = p_mixture * pdf_x
        # pdf_x: [bs, len]
        pdf_x = F.reduce_sum(pdf_x, dim=-1)
        per_sample_loss = -F.log(pdf_x + 1e-9)

        loss = F.reduce_mean(per_sample_loss)
        return loss

    def sample_from_mog(self, y):
        """sample from output distribution.
        
        Arguments:
            y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution.
        
        Returns:
            Variable -- shape(batch_size, time_steps - 1), samples.
        """

        batch_size, time_steps, output_dim = y.shape
        n_mixture = output_dim // 3

        w, mu, log_std = F.split(y, 3, dim=-1)

        reshaped_w = F.reshape(w, (batch_size * time_steps, n_mixture))
        prob_ids = F.sampling_id(F.softmax(reshaped_w))
        prob_ids = F.reshape(prob_ids, (batch_size, time_steps))
        prob_ids = prob_ids.numpy()

        index = np.array([[[b, t, prob_ids[b, t]] for t in range(time_steps)]
                          for b in range(batch_size)]).astype("int32")
        index_var = dg.to_variable(index)

        mu_ = F.gather_nd(mu, index_var)
        log_std_ = F.gather_nd(log_std, index_var)

        dist = D.Normal(mu_, F.exp(log_std_))
        samples = dist.sample(shape=[])
        samples = F.clip(samples, min=-1., max=1.)
        return samples

    def sample(self, y):
        """sample from output distribution.
        
        Arguments:
            y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution.
        
        Returns:
            Variable -- shape(batch_size, time_steps - 1), samples.
        """

        if self.loss_type == "softmax":
            return self.sample_from_softmax(y)
        else:
            return self.sample_from_mog(y)

    def loss(self, y, t):
        """compute loss.
        
        Arguments:
            y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution of multinomial distribution.
            t {Variable} -- shape(batch_size, time_steps - 1), target waveform.
        
        Returns:
            Variable -- shape(1,), loss
        """

        if self.loss_type == "softmax":
            return self.compute_softmax_loss(y, t)
K
Kexin Zhao 已提交
435
        else:
C
chenfeiyu 已提交
436
            return self.compute_mog_loss(y, t)