wavenet.py 6.3 KB
Newer Older
K
Kexin Zhao 已提交
1 2 3 4 5 6 7
import itertools
import os
import time

import librosa
import numpy as np
import paddle.fluid.dygraph as dg
K
Kexin Zhao 已提交
8
from paddle import fluid
K
Kexin Zhao 已提交
9 10 11

import utils
from data import LJSpeech
K
Kexin Zhao 已提交
12
from wavenet_modules import WaveNetModule
K
Kexin Zhao 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130


class WaveNet():
    def __init__(self, config, checkpoint_dir, parallel=False, rank=0,
                 nranks=1, tb_logger=None):
        # Process config to calculate the context size
        dilations = list(
            itertools.islice(
                itertools.cycle(config.dilation_block), config.layers))
        config.context_size = sum(dilations) + 1
        self.config = config
        self.checkpoint_dir = checkpoint_dir
        self.parallel = parallel
        self.rank = rank
        self.nranks = nranks
        self.tb_logger = tb_logger

    def build(self, training=True):
        config = self.config
        dataset = LJSpeech(config, self.nranks, self.rank) 
        self.trainloader = dataset.trainloader
        self.validloader = dataset.validloader

        wavenet = WaveNetModule("wavenet", config, self.rank)
        
        # Dry run once to create and initalize all necessary parameters.
        audio = dg.to_variable(np.random.randn(1, 20000).astype(np.float32))
        mel = dg.to_variable(
            np.random.randn(1, 100, self.config.mel_bands).astype(np.float32))
        audio_start = dg.to_variable(np.array([0], dtype=np.int32))
        wavenet(audio, mel, audio_start)

        if training:
            # Create Learning rate scheduler.
            lr_scheduler = dg.ExponentialDecay(
                learning_rate = config.learning_rate,
                decay_steps = config.anneal.every,
                decay_rate = config.anneal.rate,
                staircase=True)
    
            optimizer = fluid.optimizer.AdamOptimizer(
                learning_rate=lr_scheduler)
    
            clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
                config.gradient_max_norm)

            # Load parameters.
            utils.load_parameters(self.checkpoint_dir, self.rank,
                                  wavenet, optimizer,
                                  iteration=config.iteration,
                                  file_path=config.checkpoint)
            print("Rank {}: checkpoint loaded.".format(self.rank))
    
            # Data parallelism.
            if self.parallel:
                strategy = dg.parallel.prepare_context()
                wavenet = dg.parallel.DataParallel(wavenet, strategy)
    
            self.wavenet = wavenet
            self.optimizer = optimizer
            self.clipper = clipper

        else:
            # Load parameters.
            utils.load_parameters(self.checkpoint_dir, self.rank, wavenet,
                                  iteration=config.iteration,
                                  file_path=config.checkpoint)
            print("Rank {}: checkpoint loaded.".format(self.rank))

            self.wavenet = wavenet

    def train_step(self, iteration):
        self.wavenet.train()

        start_time = time.time()
        audios, mels, audio_starts = next(self.trainloader)
        load_time = time.time()

        loss, _ = self.wavenet(audios, mels, audio_starts)

        if self.parallel:
            # loss = loss / num_trainers
            loss = self.wavenet.scale_loss(loss)
            loss.backward()
            self.wavenet.apply_collective_grads()
        else:
            loss.backward()

        if isinstance(self.optimizer._learning_rate,
                      fluid.optimizer.LearningRateDecay):
            current_lr = self.optimizer._learning_rate.step().numpy()
        else:
            current_lr = self.optimizer._learning_rate

        self.optimizer.minimize(loss, grad_clip=self.clipper,
            parameter_list=self.wavenet.parameters())
        self.wavenet.clear_gradients()

        graph_time = time.time()

        if self.rank == 0:
            loss_val = float(loss.numpy()) * self.nranks
            log = "Rank: {} Step: {:^8d} Loss: {:<8.3f} " \
                  "Time: {:.3f}/{:.3f}".format(
                  self.rank, iteration, loss_val,
                  load_time - start_time, graph_time - load_time)
            print(log)

            tb = self.tb_logger
            tb.add_scalar("Train-Loss-Rank-0", loss_val, iteration)
            tb.add_scalar("Learning-Rate", current_lr, iteration)

    @dg.no_grad
    def valid_step(self, iteration):
        self.wavenet.eval()

        total_loss = []
        sample_audios = []
K
Kexin Zhao 已提交
131
        start_time = time.time()
K
Kexin Zhao 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        for audios, mels, audio_starts in self.validloader():
            loss, sample_audio = self.wavenet(audios, mels, audio_starts, True)
            total_loss.append(float(loss.numpy()))
            sample_audios.append(sample_audio)
        total_time = time.time() - start_time

        if self.rank == 0:
            loss_val = np.mean(total_loss)
            log = "Test | Rank: {} AvgLoss: {:<8.3f} Time {:<8.3f}".format(
                self.rank, loss_val, total_time)
            print(log)

            tb = self.tb_logger
            tb.add_scalar("Valid-Avg-Loss", loss_val, iteration)
            tb.add_audio("Teacher-Forced-Audio-0", sample_audios[0].numpy(),
                iteration, sample_rate=self.config.sample_rate)
            tb.add_audio("Teacher-Forced-Audio-1", sample_audios[1].numpy(),
                iteration, sample_rate=self.config.sample_rate)

    @dg.no_grad
    def infer(self, iteration):
        self.wavenet.eval()

        config = self.config
        sample = config.sample

        output = "{}/{}/iter-{}".format(config.output, config.name, iteration)
        os.makedirs(output, exist_ok=True)

        filename = "{}/valid_{}.wav".format(output, sample)
        print("Synthesize sample {}, save as {}".format(sample, filename))

        mels_list = [mels for _, mels, _ in self.validloader()]
        start_time = time.time()
        syn_audio = self.wavenet.synthesize(mels_list[sample])
        syn_time = time.time() - start_time
        print("audio shape {}, synthesis time {}".format(
            syn_audio.shape, syn_time))
        librosa.output.write_wav(filename, syn_audio,
            sr=config.sample_rate)
K
Kexin Zhao 已提交
172 173 174 175 176

    def save(self, iteration):
        utils.save_latest_parameters(self.checkpoint_dir, iteration,
                                     self.wavenet, self.optimizer)
        utils.save_latest_checkpoint(self.checkpoint_dir, iteration)