prenet.py 2.3 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lifuchen 已提交
14 15 16 17 18
import math
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
import paddle.fluid.layers as layers

L
lifuchen 已提交
19

L
lifuchen 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33
class PreNet(dg.Layer):
    def __init__(self, input_size, hidden_size, output_size, dropout_rate=0.2):
        """
        :param input_size: dimension of input
        :param hidden_size: dimension of hidden unit
        :param output_size: dimension of output
        """
        super(PreNet, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.dropout_rate = dropout_rate

        k = math.sqrt(1 / input_size)
L
lifuchen 已提交
34 35 36 37 38 39 40
        self.linear1 = dg.Linear(
            input_size,
            hidden_size,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.XavierInitializer()),
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-k, high=k)))
L
lifuchen 已提交
41
        k = math.sqrt(1 / hidden_size)
L
lifuchen 已提交
42 43 44 45 46 47 48
        self.linear2 = dg.Linear(
            hidden_size,
            output_size,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.XavierInitializer()),
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-k, high=k)))
L
lifuchen 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61

    def forward(self, x):
        """
        Pre Net before passing through the network.
        
        Args:
            x (Variable): Shape(B, T, C), dtype: float32. The input value.
        Returns:
            x (Variable), Shape(B, T, C), the result after pernet.
        """
        x = layers.dropout(layers.relu(self.linear1(x)), self.dropout_rate)
        x = layers.dropout(layers.relu(self.linear2(x)), self.dropout_rate)
        return x