train.py 6.6 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6
import numpy as np
import argparse
import os
import time
import math
from pathlib import Path
L
lifuchen 已提交
7 8
from parse import add_config_options_to_parser
from pprint import pprint
L
lifuchen 已提交
9
from ruamel import yaml
L
lifuchen 已提交
10
from tqdm import tqdm
11
from matplotlib import cm
L
lifuchen 已提交
12
from collections import OrderedDict
L
lifuchen 已提交
13 14 15 16
from tensorboardX import SummaryWriter
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
import paddle.fluid as fluid
L
lifuchen 已提交
17
from parakeet.models.transformer_tts.transformer_tts import TransformerTTS
L
lifuchen 已提交
18 19
from parakeet.models.fastspeech.fastspeech import FastSpeech
from parakeet.models.fastspeech.utils import get_alignment
L
lifuchen 已提交
20 21 22
import sys
sys.path.append("../transformer_tts")
from data import LJSpeechLoader
L
lifuchen 已提交
23

L
lifuchen 已提交
24 25 26 27 28 29
def load_checkpoint(step, model_path):
    model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
    new_state_dict = OrderedDict()
    for param in model_dict:
        if param.startswith('_layers.'):
            new_state_dict[param[8:]] = model_dict[param]
L
lifuchen 已提交
30
        else:
L
lifuchen 已提交
31 32
            new_state_dict[param] = model_dict[param]
    return new_state_dict, opti_dict
L
lifuchen 已提交
33

L
lifuchen 已提交
34 35 36
def main(args):
    local_rank = dg.parallel.Env().local_rank if args.use_data_parallel else 0
    nranks = dg.parallel.Env().nranks if args.use_data_parallel else 1
L
lifuchen 已提交
37

L
lifuchen 已提交
38 39
    with open(args.config_path) as f:
        cfg = yaml.load(f, Loader=yaml.Loader)
L
lifuchen 已提交
40 41 42

    global_step = 0
    place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
L
lifuchen 已提交
43 44
             if args.use_data_parallel else fluid.CUDAPlace(0)
             if args.use_gpu else fluid.CPUPlace())
L
lifuchen 已提交
45

L
lifuchen 已提交
46 47 48
    if not os.path.exists(args.log_dir):
            os.mkdir(args.log_dir)
    path = os.path.join(args.log_dir,'fastspeech')
L
lifuchen 已提交
49 50 51 52

    writer = SummaryWriter(path) if local_rank == 0 else None

    with dg.guard(place):
L
lifuchen 已提交
53 54
        with fluid.unique_name.guard():
            transformerTTS = TransformerTTS(cfg)
L
lifuchen 已提交
55
            model_dict, _ = load_checkpoint(str(args.transformer_step), os.path.join(args.transtts_path, "transformer"))
L
lifuchen 已提交
56 57
            transformerTTS.set_dict(model_dict)
            transformerTTS.eval()
L
lifuchen 已提交
58 59 60

        model = FastSpeech(cfg)
        model.train()
L
lifuchen 已提交
61
        optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(cfg['warm_up_step'] *( args.lr ** 2)), cfg['warm_up_step']),
62
                                                  parameter_list=model.parameters())
L
lifuchen 已提交
63
        reader = LJSpeechLoader(cfg, args, nranks, local_rank, shuffle=True).reader()
L
lifuchen 已提交
64
        
L
lifuchen 已提交
65 66
        if args.checkpoint_path is not None:
            model_dict, opti_dict = load_checkpoint(str(args.fastspeech_step), os.path.join(args.checkpoint_path, "fastspeech"))
L
lifuchen 已提交
67 68
            model.set_dict(model_dict)
            optimizer.set_dict(opti_dict)
L
lifuchen 已提交
69
            global_step = args.fastspeech_step
L
lifuchen 已提交
70 71
            print("load checkpoint!!!")

L
lifuchen 已提交
72
        if args.use_data_parallel:
L
lifuchen 已提交
73
            strategy = dg.parallel.prepare_context()
L
lifuchen 已提交
74
            model = fluid.dygraph.parallel.DataParallel(model, strategy)
L
lifuchen 已提交
75

L
lifuchen 已提交
76
        for epoch in range(args.epochs):
L
lifuchen 已提交
77 78 79 80
            pbar = tqdm(reader)

            for i, data in enumerate(pbar):
                pbar.set_description('Processing at epoch %d'%epoch)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
                (character, mel, mel_input, pos_text, pos_mel, text_length, mel_lens,
                enc_slf_mask, enc_query_mask, dec_slf_mask, enc_dec_mask, dec_query_slf_mask, dec_query_mask) = data

                _, _, attn_probs, _, _, _ = transformerTTS(character, mel_input, pos_text, pos_mel,
                                                           dec_slf_mask=dec_slf_mask, 
                                                           enc_slf_mask=enc_slf_mask, enc_query_mask=enc_query_mask, 
                                                           enc_dec_mask=enc_dec_mask, dec_query_slf_mask=dec_query_slf_mask,
                                                           dec_query_mask=dec_query_mask)
                alignment, max_attn = get_alignment(attn_probs, mel_lens, cfg['transformer_head'])
                alignment = dg.to_variable(alignment).astype(np.float32)

                if local_rank==0 and global_step % 5 == 1:
                    x = np.uint8(cm.viridis(max_attn[8,:mel_lens.numpy()[8]]) * 255)
                    writer.add_image('Attention_%d_0'%global_step, x, 0, dataformats="HWC")
                
L
lifuchen 已提交
96 97 98 99 100 101
                global_step += 1
                    
                #Forward
                result= model(character, 
                              pos_text, 
                              mel_pos=pos_mel,  
102 103 104 105 106
                              length_target=alignment,
                              enc_non_pad_mask=enc_query_mask,
                              enc_slf_attn_mask=enc_slf_mask,
                              dec_non_pad_mask=dec_query_slf_mask,
                              dec_slf_attn_mask=dec_slf_mask)
L
lifuchen 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119
                mel_output, mel_output_postnet, duration_predictor_output, _, _ = result
                mel_loss = layers.mse_loss(mel_output, mel)
                mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel)
                duration_loss = layers.mean(layers.abs(layers.elementwise_sub(duration_predictor_output, alignment)))
                total_loss = mel_loss + mel_postnet_loss + duration_loss

                if local_rank==0:
                    writer.add_scalar('mel_loss', mel_loss.numpy(), global_step)
                    writer.add_scalar('post_mel_loss', mel_postnet_loss.numpy(), global_step)
                    writer.add_scalar('duration_loss', duration_loss.numpy(), global_step)
                    writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step)


L
lifuchen 已提交
120
                if args.use_data_parallel:
L
lifuchen 已提交
121 122 123 124 125
                    total_loss = model.scale_loss(total_loss)
                    total_loss.backward()
                    model.apply_collective_grads()
                else:
                    total_loss.backward()
L
lifuchen 已提交
126
                optimizer.minimize(total_loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(cfg['grad_clip_thresh']))
L
lifuchen 已提交
127 128 129
                model.clear_gradients()

                 # save checkpoint
L
lifuchen 已提交
130 131 132 133
                if local_rank==0 and global_step % args.save_step == 0:
                    if not os.path.exists(args.save_path):
                        os.mkdir(args.save_path)
                    save_path = os.path.join(args.save_path,'fastspeech/%d' % global_step)
L
lifuchen 已提交
134 135 136 137 138 139 140
                    dg.save_dygraph(model.state_dict(), save_path)
                    dg.save_dygraph(optimizer.state_dict(), save_path)
        if local_rank==0:
            writer.close()


if __name__ =='__main__':
L
lifuchen 已提交
141
    parser = argparse.ArgumentParser(description="Train Fastspeech model")
L
lifuchen 已提交
142
    add_config_options_to_parser(parser)
L
lifuchen 已提交
143 144 145 146
    args = parser.parse_args()
    # Print the whole config setting.
    pprint(args)
    main(args)