import numpy as np import argparse import os import time import math from pathlib import Path from parse import add_config_options_to_parser from pprint import pprint from ruamel import yaml from tqdm import tqdm from matplotlib import cm from collections import OrderedDict from tensorboardX import SummaryWriter import paddle.fluid.dygraph as dg import paddle.fluid.layers as layers import paddle.fluid as fluid from parakeet.models.transformer_tts.transformer_tts import TransformerTTS from parakeet.models.fastspeech.fastspeech import FastSpeech from parakeet.models.fastspeech.utils import get_alignment import sys sys.path.append("../transformer_tts") from data import LJSpeechLoader def load_checkpoint(step, model_path): model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step)) new_state_dict = OrderedDict() for param in model_dict: if param.startswith('_layers.'): new_state_dict[param[8:]] = model_dict[param] else: new_state_dict[param] = model_dict[param] return new_state_dict, opti_dict def main(args): local_rank = dg.parallel.Env().local_rank if args.use_data_parallel else 0 nranks = dg.parallel.Env().nranks if args.use_data_parallel else 1 with open(args.config_path) as f: cfg = yaml.load(f, Loader=yaml.Loader) global_step = 0 place = (fluid.CUDAPlace(dg.parallel.Env().dev_id) if args.use_data_parallel else fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()) if not os.path.exists(args.log_dir): os.mkdir(args.log_dir) path = os.path.join(args.log_dir,'fastspeech') writer = SummaryWriter(path) if local_rank == 0 else None with dg.guard(place): with fluid.unique_name.guard(): transformerTTS = TransformerTTS(cfg) model_dict, _ = load_checkpoint(str(args.transformer_step), os.path.join(args.transtts_path, "transformer")) transformerTTS.set_dict(model_dict) transformerTTS.eval() model = FastSpeech(cfg) model.train() optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(cfg['warm_up_step'] *( args.lr ** 2)), cfg['warm_up_step']), parameter_list=model.parameters()) reader = LJSpeechLoader(cfg, args, nranks, local_rank, shuffle=True).reader() if args.checkpoint_path is not None: model_dict, opti_dict = load_checkpoint(str(args.fastspeech_step), os.path.join(args.checkpoint_path, "fastspeech")) model.set_dict(model_dict) optimizer.set_dict(opti_dict) global_step = args.fastspeech_step print("load checkpoint!!!") if args.use_data_parallel: strategy = dg.parallel.prepare_context() model = fluid.dygraph.parallel.DataParallel(model, strategy) for epoch in range(args.epochs): pbar = tqdm(reader) for i, data in enumerate(pbar): pbar.set_description('Processing at epoch %d'%epoch) (character, mel, mel_input, pos_text, pos_mel, text_length, mel_lens, enc_slf_mask, enc_query_mask, dec_slf_mask, enc_dec_mask, dec_query_slf_mask, dec_query_mask) = data _, _, attn_probs, _, _, _ = transformerTTS(character, mel_input, pos_text, pos_mel, dec_slf_mask=dec_slf_mask, enc_slf_mask=enc_slf_mask, enc_query_mask=enc_query_mask, enc_dec_mask=enc_dec_mask, dec_query_slf_mask=dec_query_slf_mask, dec_query_mask=dec_query_mask) alignment, max_attn = get_alignment(attn_probs, mel_lens, cfg['transformer_head']) alignment = dg.to_variable(alignment).astype(np.float32) if local_rank==0 and global_step % 5 == 1: x = np.uint8(cm.viridis(max_attn[8,:mel_lens.numpy()[8]]) * 255) writer.add_image('Attention_%d_0'%global_step, x, 0, dataformats="HWC") global_step += 1 #Forward result= model(character, pos_text, mel_pos=pos_mel, length_target=alignment, enc_non_pad_mask=enc_query_mask, enc_slf_attn_mask=enc_slf_mask, dec_non_pad_mask=dec_query_slf_mask, dec_slf_attn_mask=dec_slf_mask) mel_output, mel_output_postnet, duration_predictor_output, _, _ = result mel_loss = layers.mse_loss(mel_output, mel) mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel) duration_loss = layers.mean(layers.abs(layers.elementwise_sub(duration_predictor_output, alignment))) total_loss = mel_loss + mel_postnet_loss + duration_loss if local_rank==0: writer.add_scalar('mel_loss', mel_loss.numpy(), global_step) writer.add_scalar('post_mel_loss', mel_postnet_loss.numpy(), global_step) writer.add_scalar('duration_loss', duration_loss.numpy(), global_step) writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step) if args.use_data_parallel: total_loss = model.scale_loss(total_loss) total_loss.backward() model.apply_collective_grads() else: total_loss.backward() optimizer.minimize(total_loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(cfg['grad_clip_thresh'])) model.clear_gradients() # save checkpoint if local_rank==0 and global_step % args.save_step == 0: if not os.path.exists(args.save_path): os.mkdir(args.save_path) save_path = os.path.join(args.save_path,'fastspeech/%d' % global_step) dg.save_dygraph(model.state_dict(), save_path) dg.save_dygraph(optimizer.state_dict(), save_path) if local_rank==0: writer.close() if __name__ =='__main__': parser = argparse.ArgumentParser(description="Train Fastspeech model") add_config_options_to_parser(parser) args = parser.parse_args() # Print the whole config setting. pprint(args) main(args)