Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
0e9ae273
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0e9ae273
编写于
5月 08, 2020
作者:
F
FlyingQianMM
浏览文件
操作
浏览文件
下载
差异文件
fix draw_pr_curve in docs
上级
52d9fcbd
ece29fe5
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
266 addition
and
11 deletion
+266
-11
docs/anaconda_install.md
docs/anaconda_install.md
+59
-0
docs/apis/images/insect_bbox_pr_curve(iou-0.5).png
docs/apis/images/insect_bbox_pr_curve(iou-0.5).png
+0
-0
docs/apis/visualize.md
docs/apis/visualize.md
+54
-5
docs/images/anaconda_windows.png
docs/images/anaconda_windows.png
+0
-0
docs/images/visualized_maskrcnn.jpeg
docs/images/visualized_maskrcnn.jpeg
+0
-0
docs/install.md
docs/install.md
+3
-1
paddlex/cv/models/utils/visualize.py
paddlex/cv/models/utils/visualize.py
+150
-5
未找到文件。
docs/anaconda_install.md
0 → 100644
浏览文件 @
0e9ae273
# Anaconda安装使用
Anaconda是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。使用Anaconda可以通过创建多个独立的Python环境,避免用户的Python环境安装太多不同版本依赖导致冲突。
## Windows安装Anaconda
### 第一步 下载
在Anaconda官网
[
(https://www.anaconda.com/products/individual)
](
https://www.anaconda.com/products/individual
)
选择下载Windows Python3.7 64-Bit版本
### 第二步 安装
运行下载的安装包(以.exe为后辍),根据引导完成安装, 用户可自行修改安装目录(如下图)

### 第三步 使用
-
点击Windows系统左下角的Windows图标,打开:所有程序->Anaconda3/2(64-bit)->Anaconda Prompt
-
在命令行中执行下述命令
```
cmd
# 创建名为my_paddlex的环境,指定Python版本为3.7
conda create -n my_paddlex python=3.7
# 进入my_paddlex环境
conda activate my_paddlex
# 安装git
conda install git
# 安装pycocotools
pip install cython
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
# 安装paddlepaddle-gpu
pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
# 安装paddlex
pip install paddlex -i https://mirror.baidu.com/pypi/simple
```
按如上方式配置后,即可在环境中使用PaddleX了,命令行输入
`python`
回车后,
`import paddlex`
试试吧,之后再次使用都可以通过打开'所有程序->Anaconda3/2(64-bit)->Anaconda Prompt',再执行
`conda activate my_paddlex`
进入环境后,即可再次使用paddlex
## Linux/Mac安装
### 第一步 下载
在Anaconda官网
[
(https://www.anaconda.com/products/individual)
](
https://www.anaconda.com/products/individual
)
选择下载对应系统 Python3.7版本下载(Mac下载Command Line Installer版本即可)
### 第二步 安装
打开终端,在终端安装Anaconda
```
# ~/Downloads/Anaconda3-2019.07-Linux-x86_64.sh即下载的文件
bash ~/Downloads/Anaconda3-2019.07-Linux-x86_64.sh
```
安装过程中一直回车即可,如提示设置安装路径,可根据需求修改,一般默认即可。
### 第三步 使用
```
# 创建名为my_paddlex的环境,指定Python版本为3.7
conda create -n my_paddlex python=3.7
# 进入paddlex环境
conda activate my_paddlex
# 安装pycocotools
pip install cython
pip install pycocotools
# 安装paddlepaddle-gpu
pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
# 安装paddlex
pip install paddlex -i https://mirror.baidu.com/pypi/simple
```
按如上方式配置后,即可在环境中使用PaddleX了,终端输入
`python`
回车后,
`import paddlex`
试试吧,之后再次使用只需再打开终端,再执行
`conda activate my_paddlex`
进入环境后,即可使用paddlex
docs/apis/images/insect_bbox_pr_curve(iou-0.5).png
0 → 100644
浏览文件 @
0e9ae273
711.2 KB
docs/apis/visualize.md
浏览文件 @
0e9ae273
...
@@ -3,7 +3,7 @@ PaddleX提供了一系列模型预测和结果分析的可视化函数。
...
@@ -3,7 +3,7 @@ PaddleX提供了一系列模型预测和结果分析的可视化函数。
## 目标检测/实例分割预测结果可视化
## 目标检测/实例分割预测结果可视化
```
```
paddlex.det.visualize(image, result, threshold=0.5, save_dir=
None
)
paddlex.det.visualize(image, result, threshold=0.5, save_dir=
'./'
)
```
```
将目标检测/实例分割模型预测得到的Box框和Mask在原图上进行可视化
将目标检测/实例分割模型预测得到的Box框和Mask在原图上进行可视化
...
@@ -11,7 +11,7 @@ paddlex.det.visualize(image, result, threshold=0.5, save_dir=None)
...
@@ -11,7 +11,7 @@ paddlex.det.visualize(image, result, threshold=0.5, save_dir=None)
> * **image** (str): 原图文件路径。
> * **image** (str): 原图文件路径。
> * **result** (str): 模型预测结果。
> * **result** (str): 模型预测结果。
> * **threshold**(float): score阈值,将Box置信度低于该阈值的框过滤不进行可视化。默认0.5
> * **threshold**(float): score阈值,将Box置信度低于该阈值的框过滤不进行可视化。默认0.5
> * **save_dir**(str): 可视化结果保存路径。若为None,则表示不保存,该函数将可视化的结果以np.ndarray的形式返回;若设为目录路径,则将可视化结果保存至该目录下
> * **save_dir**(str): 可视化结果保存路径。若为None,则表示不保存,该函数将可视化的结果以np.ndarray的形式返回;若设为目录路径,则将可视化结果保存至该目录下
。默认值为'./'。
### 使用示例
### 使用示例
> 点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)和[测试图片](https://bj.bcebos.com/paddlex/datasets/xiaoduxiong.jpeg)
> 点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)和[测试图片](https://bj.bcebos.com/paddlex/datasets/xiaoduxiong.jpeg)
...
@@ -23,17 +23,66 @@ pdx.det.visualize('xiaoduxiong.jpeg', result, save_dir='./')
...
@@ -23,17 +23,66 @@ pdx.det.visualize('xiaoduxiong.jpeg', result, save_dir='./')
#
预测结果保存在
./
visualize_xiaoduxiong
.
jpeg
#
预测结果保存在
./
visualize_xiaoduxiong
.
jpeg
```
```
## 目标检测/实例分割准确率-召回率可视化
```
paddlex.det.draw_pr_curve(eval_details_file=None, gt=None, pred_bbox=None, pred_mask=None, iou_thresh=0.5, save_dir='./')
```
将目标检测/实例分割模型评估结果中各个类别的准确率和召回率的对应关系进行可视化,同时可视化召回率和置信度阈值的对应关系。
### 参数
> * **eval_details_file** (str): 模型评估结果的保存路径,包含真值信息和预测结果。默认值为None。
> * **gt** (list): 数据集的真值信息。默认值为None。
> * **pred_bbox** (list): 模型在数据集上的预测框。默认值为None。
> * **pred_mask** (list): 模型在数据集上的预测mask。默认值为None。
> * **iou_thresh** (float): 判断预测框或预测mask为真阳时的IoU阈值。默认值为0.5。
> * **save_dir** (str): 可视化结果保存路径。默认值为'./'。
**注意:**
`eval_details_file`
的优先级更高,只要
`eval_details_file`
不为None,就会从
`eval_details_file`
提取真值信息和预测结果做分析。当
`eval_details_file`
为None时,则用
`gt`
、
`pred_mask`
、
`pred_mask`
做分析。
### 使用示例
点击下载如下示例中的
[
模型
](
)和[数据集](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz)
> 方式一:分析训练过程中保存的模型文件夹中的评估结果文件`eval_details.json`,例如[模型]()中的`eval_details.json`。
```
import paddlex as pdx
eval_details_file = 'insect_epoch_/eval_details.json'
pdx.det.draw_pr_curve(eval_details_file, save_dir='./insect')
```
> 方式二:分析模型评估函数返回的评估结果。
```
import
os
#
选择使用
0
号卡
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
from
paddlex
.
det
import
transforms
import
paddlex
as
pdx
model
=
pdx
.
load_model
(
'xiaoduxiong_epoch_12'
)
eval_dataset
=
pdx
.
datasets
.
CocoDetection
(
data_dir
=
'xiaoduxiong_ins_det/JPEGImages'
,
ann_file
=
'xiaoduxiong_ins_det/val.json'
,
transforms
=
model
.
eval_transforms
)
metrics
,
evaluate_details
=
model
.
evaluate
(
eval_dataset
,
batch_size
=
8
,
return_details
=
True
)
gt
=
evaluate_details
[
'gt'
]
bbox
=
evaluate_details
[
'bbox'
]
pdx
.
det
.
draw_pr_curve
(
gt
=
gt
,
pred_bbox
=
bbox
,
save_dir
=
'./insect'
)
```
预测框的各个类别的准确率和召回率的对应关系、召回率和置信度阈值的对应关系可视化如下:

.png)
## 语义分割预测结果可视化
## 语义分割预测结果可视化
```
```
paddlex.seg.visualize(image, result, weight=0.6, save_dir=
None
)
paddlex.seg.visualize(image, result, weight=0.6, save_dir=
'./'
)
```
```
将语义分割模型预测得到的Mask在原图上进行可视化
将语义分割模型预测得到的Mask在原图上进行可视化
### 参数
### 参数
> * **image** (str): 原图文件路径。
> * **image** (str): 原图文件路径。
> * **result** (str): 模型预测结果。
> * **result** (str): 模型预测结果。
> * **weight**(float): mask可视化结果与原图权重因子,weight表示原图的权重。默认0.6
> * **weight**(float): mask可视化结果与原图权重因子,weight表示原图的权重。默认0.6
。
> * **save_dir**(str): 可视化结果保存路径。若为None,则表示不保存,该函数将可视化的结果以np.ndarray的形式返回;若设为目录路径,则将可视化结果保存至该目录下
> * **save_dir**(str): 可视化结果保存路径。若为None,则表示不保存,该函数将可视化的结果以np.ndarray的形式返回;若设为目录路径,则将可视化结果保存至该目录下
。默认值为'./'。
### 使用示例
### 使用示例
> 点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/cityscape_deeplab.tar.gz)和[测试图片](https://bj.bcebos.com/paddlex/datasets/city.png)
> 点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/cityscape_deeplab.tar.gz)和[测试图片](https://bj.bcebos.com/paddlex/datasets/city.png)
...
...
docs/images/anaconda_windows.png
0 → 100644
浏览文件 @
0e9ae273
74.6 KB
docs/images/visualized_maskrcnn.jpeg
0 → 100644
浏览文件 @
0e9ae273
188.2 KB
docs/install.md
浏览文件 @
0e9ae273
# 安装
# 安装
> 以下安装过程默认用户已安装好**paddlepaddle-gpu或paddlepaddle(版本大于或等于1.7.1)**,paddlepaddle安装方式参照[飞桨官网](https://www.paddlepaddle.org.cn/install/quick)
以下安装过程默认用户已安装好
**paddlepaddle-gpu或paddlepaddle(版本大于或等于1.7.1)**
,paddlepaddle安装方式参照
[
飞桨官网
](
https://www.paddlepaddle.org.cn/install/quick
)
> 推荐使用Anaconda Python环境,Anaconda下安装PaddleX参考文档[Anaconda安装使用](./anaconda_install.md)
## Github代码安装
## Github代码安装
github代码会跟随开发进度不断更新
github代码会跟随开发进度不断更新
...
...
paddlex/cv/models/utils/visualize.py
浏览文件 @
0e9ae273
...
@@ -14,14 +14,19 @@
...
@@ -14,14 +14,19 @@
import
os
import
os
import
cv2
import
cv2
import
colorsys
import
numpy
as
np
import
numpy
as
np
import
matplotlib
as
mpl
import
matplotlib
as
mpl
import
matplotlib.pyplot
as
plt
import
matplotlib.figure
as
mplfigure
import
matplotlib.figure
as
mplfigure
import
matplotlib.colors
as
mplc
import
matplotlib.colors
as
mplc
from
matplotlib.backends.backend_agg
import
FigureCanvasAgg
from
matplotlib.backends.backend_agg
import
FigureCanvasAgg
import
paddlex.utils.logging
as
logging
from
.detection_eval
import
fixed_linspace
,
backup_linspace
,
loadRes
def
visualize_detection
(
image
,
result
,
threshold
=
0.5
,
save_dir
=
None
):
def
visualize_detection
(
image
,
result
,
threshold
=
0.5
,
save_dir
=
'./'
):
"""
"""
Visualize bbox and mask results
Visualize bbox and mask results
"""
"""
...
@@ -34,11 +39,12 @@ def visualize_detection(image, result, threshold=0.5, save_dir=None):
...
@@ -34,11 +39,12 @@ def visualize_detection(image, result, threshold=0.5, save_dir=None):
os
.
makedirs
(
save_dir
)
os
.
makedirs
(
save_dir
)
out_path
=
os
.
path
.
join
(
save_dir
,
'visualize_{}'
.
format
(
image_name
))
out_path
=
os
.
path
.
join
(
save_dir
,
'visualize_{}'
.
format
(
image_name
))
cv2
.
imwrite
(
out_path
,
image
)
cv2
.
imwrite
(
out_path
,
image
)
logging
.
info
(
'The visualized result is saved as {}'
.
format
(
out_path
))
else
:
else
:
return
image
return
image
def
visualize_segmentation
(
image
,
result
,
weight
=
0.6
,
save_dir
=
None
):
def
visualize_segmentation
(
image
,
result
,
weight
=
0.6
,
save_dir
=
'./'
):
"""
"""
Convert segment result to color image, and save added image.
Convert segment result to color image, and save added image.
Args:
Args:
...
@@ -65,6 +71,7 @@ def visualize_segmentation(image, result, weight=0.6, save_dir=None):
...
@@ -65,6 +71,7 @@ def visualize_segmentation(image, result, weight=0.6, save_dir=None):
image_name
=
os
.
path
.
split
(
image
)[
-
1
]
image_name
=
os
.
path
.
split
(
image
)[
-
1
]
out_path
=
os
.
path
.
join
(
save_dir
,
'visualize_{}'
.
format
(
image_name
))
out_path
=
os
.
path
.
join
(
save_dir
,
'visualize_{}'
.
format
(
image_name
))
cv2
.
imwrite
(
out_path
,
vis_result
)
cv2
.
imwrite
(
out_path
,
vis_result
)
logging
.
info
(
'The visualized result is saved as {}'
.
format
(
out_path
))
else
:
else
:
return
vis_result
return
vis_result
...
@@ -122,6 +129,18 @@ def clip_bbox(bbox):
...
@@ -122,6 +129,18 @@ def clip_bbox(bbox):
def
draw_bbox_mask
(
image
,
results
,
threshold
=
0.5
):
def
draw_bbox_mask
(
image
,
results
,
threshold
=
0.5
):
# refer to https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/visualizer.py
# refer to https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/visualizer.py
def
_change_color_brightness
(
color
,
brightness_factor
):
assert
brightness_factor
>=
-
1.0
and
brightness_factor
<=
1.0
color
=
mplc
.
to_rgb
(
color
)
polygon_color
=
colorsys
.
rgb_to_hls
(
*
mplc
.
to_rgb
(
color
))
modified_lightness
=
polygon_color
[
1
]
+
(
brightness_factor
*
polygon_color
[
1
])
modified_lightness
=
0.0
if
modified_lightness
<
0.0
else
modified_lightness
modified_lightness
=
1.0
if
modified_lightness
>
1.0
else
modified_lightness
modified_color
=
colorsys
.
hls_to_rgb
(
polygon_color
[
0
],
modified_lightness
,
polygon_color
[
2
])
return
modified_color
_SMALL_OBJECT_AREA_THRESH
=
1000
_SMALL_OBJECT_AREA_THRESH
=
1000
# setup figure
# setup figure
width
,
height
=
image
.
shape
[
1
],
image
.
shape
[
0
]
width
,
height
=
image
.
shape
[
1
],
image
.
shape
[
0
]
...
@@ -176,7 +195,7 @@ def draw_bbox_mask(image, results, threshold=0.5):
...
@@ -176,7 +195,7 @@ def draw_bbox_mask(image, results, threshold=0.5):
fill
=
False
,
fill
=
False
,
edgecolor
=
color
,
edgecolor
=
color
,
linewidth
=
linewidth
*
scale
,
linewidth
=
linewidth
*
scale
,
alpha
=
0.
5
,
alpha
=
0.
8
,
linestyle
=
"-"
,
linestyle
=
"-"
,
))
))
...
@@ -187,7 +206,7 @@ def draw_bbox_mask(image, results, threshold=0.5):
...
@@ -187,7 +206,7 @@ def draw_bbox_mask(image, results, threshold=0.5):
res
=
cv2
.
findContours
(
res
=
cv2
.
findContours
(
mask
.
astype
(
"uint8"
),
cv2
.
RETR_CCOMP
,
cv2
.
CHAIN_APPROX_NONE
)
mask
.
astype
(
"uint8"
),
cv2
.
RETR_CCOMP
,
cv2
.
CHAIN_APPROX_NONE
)
hierarchy
=
res
[
-
1
]
hierarchy
=
res
[
-
1
]
alpha
=
0.
7
5
alpha
=
0.5
if
hierarchy
is
not
None
:
if
hierarchy
is
not
None
:
has_holes
=
(
hierarchy
.
reshape
(
-
1
,
4
)[:,
3
]
>=
0
).
sum
()
>
0
has_holes
=
(
hierarchy
.
reshape
(
-
1
,
4
)[:,
3
]
>=
0
).
sum
()
>
0
res
=
res
[
-
2
]
res
=
res
[
-
2
]
...
@@ -221,7 +240,7 @@ def draw_bbox_mask(image, results, threshold=0.5):
...
@@ -221,7 +240,7 @@ def draw_bbox_mask(image, results, threshold=0.5):
text
=
"{} {:.2f}"
.
format
(
cname
,
score
)
text
=
"{} {:.2f}"
.
format
(
cname
,
score
)
color
=
np
.
maximum
(
list
(
mplc
.
to_rgb
(
color
)),
0.2
)
color
=
np
.
maximum
(
list
(
mplc
.
to_rgb
(
color
)),
0.2
)
color
[
np
.
argmax
(
color
)]
=
max
(
0.8
,
np
.
max
(
color
))
color
[
np
.
argmax
(
color
)]
=
max
(
0.8
,
np
.
max
(
color
))
color
=
_change_color_brightness
(
color
,
brightness_factor
=
0.7
)
ax
.
text
(
ax
.
text
(
text_pos
[
0
],
text_pos
[
0
],
text_pos
[
1
],
text_pos
[
1
],
...
@@ -258,3 +277,129 @@ def draw_bbox_mask(image, results, threshold=0.5):
...
@@ -258,3 +277,129 @@ def draw_bbox_mask(image, results, threshold=0.5):
visualized_image
=
visualized_image
.
astype
(
"uint8"
)
visualized_image
=
visualized_image
.
astype
(
"uint8"
)
return
visualized_image
return
visualized_image
def
draw_pr_curve
(
eval_details_file
=
None
,
gt
=
None
,
pred_bbox
=
None
,
pred_mask
=
None
,
iou_thresh
=
0.5
,
save_dir
=
'./'
):
if
eval_details_file
is
not
None
:
import
json
with
open
(
eval_details_file
,
'r'
)
as
f
:
eval_details
=
json
.
load
(
f
)
pred_bbox
=
eval_details
[
'bbox'
]
if
'mask'
in
eval_details
:
pred_mask
=
eval_details
[
'mask'
]
gt
=
eval_details
[
'gt'
]
if
gt
is
None
or
pred_bbox
is
None
:
raise
Exception
(
"gt/pred_bbox/pred_mask is None now, please set right eval_details_file or gt/pred_bbox/pred_mask."
)
if
pred_bbox
is
not
None
and
len
(
pred_bbox
)
==
0
:
raise
Exception
(
"There is no predicted bbox."
)
if
pred_mask
is
not
None
and
len
(
pred_mask
)
==
0
:
raise
Exception
(
"There is no predicted mask."
)
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
coco
=
COCO
()
coco
.
dataset
=
gt
coco
.
createIndex
()
def
_summarize
(
coco_gt
,
ap
=
1
,
iouThr
=
None
,
areaRng
=
'all'
,
maxDets
=
100
):
p
=
coco_gt
.
params
aind
=
[
i
for
i
,
aRng
in
enumerate
(
p
.
areaRngLbl
)
if
aRng
==
areaRng
]
mind
=
[
i
for
i
,
mDet
in
enumerate
(
p
.
maxDets
)
if
mDet
==
maxDets
]
if
ap
==
1
:
# dimension of precision: [TxRxKxAxM]
s
=
coco_gt
.
eval
[
'precision'
]
# IoU
if
iouThr
is
not
None
:
t
=
np
.
where
(
iouThr
==
p
.
iouThrs
)[
0
]
s
=
s
[
t
]
s
=
s
[:,
:,
:,
aind
,
mind
]
else
:
# dimension of recall: [TxKxAxM]
s
=
coco_gt
.
eval
[
'recall'
]
if
iouThr
is
not
None
:
t
=
np
.
where
(
iouThr
==
p
.
iouThrs
)[
0
]
s
=
s
[
t
]
s
=
s
[:,
:,
aind
,
mind
]
if
len
(
s
[
s
>
-
1
])
==
0
:
mean_s
=
-
1
else
:
mean_s
=
np
.
mean
(
s
[
s
>
-
1
])
return
mean_s
def
cal_pr
(
coco_gt
,
coco_dt
,
iou_thresh
,
save_dir
,
style
=
'bbox'
):
from
pycocotools.cocoeval
import
COCOeval
coco_dt
=
loadRes
(
coco_gt
,
coco_dt
)
np
.
linspace
=
fixed_linspace
coco_eval
=
COCOeval
(
coco_gt
,
coco_dt
,
style
)
coco_eval
.
params
.
iouThrs
=
np
.
linspace
(
iou_thresh
,
iou_thresh
,
1
,
endpoint
=
True
)
np
.
linspace
=
backup_linspace
coco_eval
.
evaluate
()
coco_eval
.
accumulate
()
stats
=
_summarize
(
coco_eval
,
iouThr
=
iou_thresh
)
catIds
=
coco_gt
.
getCatIds
()
if
len
(
catIds
)
!=
coco_eval
.
eval
[
'precision'
].
shape
[
2
]:
raise
Exception
(
"The category number must be same as the third dimension of precisions."
)
x
=
np
.
arange
(
0.0
,
1.01
,
0.01
)
color_map
=
get_color_map_list
(
256
)[
1
:
256
]
plt
.
subplot
(
1
,
2
,
1
)
plt
.
title
(
style
+
" precision-recall IoU={}"
.
format
(
iou_thresh
))
plt
.
xlabel
(
"recall"
)
plt
.
ylabel
(
"precision"
)
plt
.
xlim
(
0
,
1.01
)
plt
.
ylim
(
0
,
1.01
)
plt
.
grid
(
linestyle
=
'--'
,
linewidth
=
1
)
plt
.
plot
([
0
,
1
],
[
0
,
1
],
'r--'
,
linewidth
=
1
)
my_x_ticks
=
np
.
arange
(
0
,
1.01
,
0.1
)
my_y_ticks
=
np
.
arange
(
0
,
1.01
,
0.1
)
plt
.
xticks
(
my_x_ticks
,
fontsize
=
5
)
plt
.
yticks
(
my_y_ticks
,
fontsize
=
5
)
for
idx
,
catId
in
enumerate
(
catIds
):
pr_array
=
coco_eval
.
eval
[
'precision'
][
0
,
:,
idx
,
0
,
2
]
precision
=
pr_array
[
pr_array
>
-
1
]
ap
=
np
.
mean
(
precision
)
if
precision
.
size
else
float
(
'nan'
)
nm
=
coco_gt
.
loadCats
(
catId
)[
0
][
'name'
]
+
' AP={:0.2f}'
.
format
(
float
(
ap
*
100
))
color
=
tuple
(
color_map
[
idx
])
color
=
[
float
(
c
)
/
255
for
c
in
color
]
color
.
append
(
0.75
)
plt
.
plot
(
x
,
pr_array
,
color
=
color
,
label
=
nm
,
linewidth
=
1
)
plt
.
legend
(
loc
=
"lower left"
,
fontsize
=
5
)
plt
.
subplot
(
1
,
2
,
2
)
plt
.
title
(
style
+
" score-recall IoU={}"
.
format
(
iou_thresh
))
plt
.
xlabel
(
'recall'
)
plt
.
ylabel
(
'score'
)
plt
.
xlim
(
0
,
1.01
)
plt
.
ylim
(
0
,
1.01
)
plt
.
grid
(
linestyle
=
'--'
,
linewidth
=
1
)
plt
.
xticks
(
my_x_ticks
,
fontsize
=
5
)
plt
.
yticks
(
my_y_ticks
,
fontsize
=
5
)
for
idx
,
catId
in
enumerate
(
catIds
):
nm
=
coco_gt
.
loadCats
(
catId
)[
0
][
'name'
]
sr_array
=
coco_eval
.
eval
[
'scores'
][
0
,
:,
idx
,
0
,
2
]
color
=
tuple
(
color_map
[
idx
])
color
=
[
float
(
c
)
/
255
for
c
in
color
]
color
.
append
(
0.75
)
plt
.
plot
(
x
,
sr_array
,
color
=
color
,
label
=
nm
,
linewidth
=
1
)
plt
.
legend
(
loc
=
"lower left"
,
fontsize
=
5
)
plt
.
savefig
(
os
.
path
.
join
(
save_dir
,
"./{}_pr_curve(iou-{}).png"
.
format
(
style
,
iou_thresh
)),
dpi
=
800
)
plt
.
close
()
if
not
os
.
path
.
exists
(
save_dir
):
os
.
makedirs
(
save_dir
)
cal_pr
(
coco
,
pred_bbox
,
iou_thresh
,
save_dir
,
style
=
'bbox'
)
if
pred_mask
is
not
None
:
cal_pr
(
coco
,
pred_mask
,
iou_thresh
,
save_dir
,
style
=
'segm'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录